A Fully Integrated Activity Sensing CMOS Circuit for Rate-Adaptive Pacemakers.

Alfredo Arnaud⁽¹⁾ Carlos Galup Montoro⁽²⁾

(1) GME –IIE, Universidad de la República , Montevideo – Uruguay.

(2) LCI, Universidade Federal de Santa Catarina - Florianopolis - Brazil.

Objective: A circuit to sense patient's physical activity in rate-adaptive pacemakers.

Contents:

- Circuit specifications, analysis and dificulties.
 - Series-Parallel division applied to OTAs with very low transconductance and extended linear range.
- 0.5 7Hz, G=400, bandpass-amplifier architecture and measurements.
 - Activity estimation measuremnts.
- Conclusiones.

Circuit Specifications

Case of study: Signal conditioning circuit for a piezoelectric accelerometer which is part of a rate adaptive pacemaker.

Based on Piezoelectric accelerometer.

Objective:

- 1st To realize the Hz-order continuous-time circuit without using external elements.
- 2nd To reduce as much as possible power consumption, area, and noise.

Specifications: System.

Specification	Range
Supply Voltage	2.8 - 2.0 V
Accelerations range	0.007 - 0.34 g _{peak}
Input Voltage Range	(24 μ V _{peak} - 1.2 mV _{peak}) \pm 3.5mV gravity step
Current Consumption	< 2µA
Frequency Response.	Bandpass 0.5-7Hz, 40 dB/dec
Input Noise.	< 12μV _{rms}
Input Offset.	< 13µV
Gain.	400
Others	No external elements (i.e. R, C)
	Relaxed tolerance in transfer function

Specifications: Sensor.

Main chalenges:

- ransducer with a very high output impedance.
- Small signal inmerse in much higher gravity steps.
- Low noise, micropower.

 Sub-Hz filter without the aid of external resistors or capacitors.

<u>Selected Circuit Techique:</u> G_m-C continuous -time.

Extremely low transconductors or large capacitors are required for low frequency filters.

KEY TECHNIQUE:

Series-Parallel division OTAs:

OTAs: Basic Series-Parallel OTA.

- Very simple circuit ⇒ less area, power consumption.
- Do not introduce much excess noise or offset.
- Easy to reuse layout.

• Fabricated and tested OTAs up to 35nS (30G Ω) and 1V linear range.

OTAS: Example $G_{m6} = 100 pS$ ($10G\Omega$)

OTAS: Example $G_{m3} = 35pS$ (30G Ω !!)

OTAS: Measured/estimated characteristics.

ОТА	Transc. ^[a]	Linearity V _{Lin} [mV]	Input noise. $[\mu V_{rms}]^{[a]}$	Input Offset ovoff [mV]	Current Cons.[nA]	Area [mm²]
G_{m1}	110(110)nS	60	5 (4)	1.1	14	.019
G_{m2}	2.35(2.58)nS	150	42	4.4	43	.040
G_{m3}	35(33)pS	150	163(130)	2.1	42	.092
G_{m4}	21nS	150			47	.051
G_{m5}	2.4(2.8)nS	500		9.1	44	.18
G_{m6}	89(100)pS	500		6.8	44	.10

0.5-7Hz Filter-Amplifier

Bandpass-Amplifier 0.5-7Hz: Critical aspects.

Bandpass Measurements: Gain - Frequency. 400 350 300 **Predicted** Measured 250 200 Gain 150 100 50 A frec. 0 1.8Hz 0.01 0.1 10 100 1000 Frequency[Hz]

Measurements: Qualitative response w/sensor.

Filter-Amplifier Measurements: Characteristics.

Specification.	Measured Value.
Pass-band frequency	40db/dec 0.5-7Hz
Gain	390
Input noise	$2.1 \mu V_{rms}$
Supply voltage	2.0 - 2.8 V
Current Consumption	230nA
Area	0.78mm^2
Input Offset	18µV

Physical Activity Sensing

System Output:

Measurement at at different activities.

Physical Activity	System Output			
Sleeping	0 mV			
Working on a Computer	30 mV			
Walking (slow)	44 mV			
Walking (normal)	86 mV			
Walking (fast)	210 mV			
Climbing up stairs	95 mV			
Going down stairs	82 mV			
Climbing up stairs (fast)	200 mV			
Running (10km/h)	423 mV			

Conclusions

Conclusions: A comparative survey *.

* (Includes integrated rectifier)

Circuit Description.	Technique	Discrete Elements	Input Noise	Gain	Current Consumptio	Supply Voltage	Area [mm²]
(#1) 0.5-7Hz 2 nd . order bandpass + rectifier + time averaging	G _m -C using series-parallel division OTAs	no	2-4μV _{rms}	400	300nA	2-2.8V	1.2
bandpass + rectifier + time averaging.	inuous- time niques	10	18μν _{rms}	2900	зμ а ola et al.	Z-Z.OV	1.02
(#3) - 0.5-7Hz 1 st orde bandpass + rectifier.	thed itors	2 for time averaging			diac sens		•
(#4) - o order, 2.4⊓2 lowpass filter.	/	11	work		3.3μΑ	3V	1
(#5) - 3 rd . Order bandpass filter 110Hz.	(#:	3) GME	- IIE, 2	000		2-2.8V	1.9
(#4) Solis-Bustos et al. TCAS-II, 2000.							

Concusions:

Series-parallel Division OTAs:

Filter Design:

System Level:

- Physical activity measurement circuit:
 - ⇒ Improves previous results. (power-noise-sensitivity)
 - ⇒ Apt to use in modern rateaptive pacemakers.

No external elements have been employed!