PRESCALERS

Frequency Synthesizers

Using a reference counter in a PLL synthesizer

resolution: F_{1}

Synchronous vs. asynchronous counters (high-frequency)

Synchronous counters

- consume large power
- represent large CLOAD to oscillator
- race problems

Synchronous counter

- delay almost constant between the input clock and the output at the divided frequency (NOT proportional to no. of flip-flops)

Divide-by-5 single prescaler

Dual $3 / 4$ prescaler and state diagram
J. A De Lima - Introdução ao Projeto de CI's de Sinais Mistos CMOS
asynchronous counters \Rightarrow preferred option for high-frequency
(a)

(b)

Asynchronous counters: (a) cascade of toggle flip-flops and (b) cascade of modulo-2 Johnson counters

- forward/backward counting
- power consumption is reduced, as each stage operates at half frequency of previous stage

Asynchronous ripple counter

- delay is however added between the input clock and the output at the divided frequency (proportional to no. of flip-flops)

Programmable dividers

Presettable modulo- P asynchronous counter (modulus-8 with backwards counting from Q3Q2Q1 $=111$ to 000)
Basic principle: to preset counter to a initial state P and detect final state F by means of an 'end-of-count' EOC logic \Rightarrow the counter counts down between P and F

- limitation is max fin as correct operation is guaranteed if EOC signal presets the counter before the next clock edge arrives
i) High-frequency operation is attained when logic function is kept simple
i) simplest dividers divide by fixed numbers
\Rightarrow programmable divider could have a fixed-modulus high-speed divider as first stage
- If a pre-settable modulus-P divider follows a modulus-N prescaler, overall frequency division ratio is NxP .
- the input frequency has to be lowered exactly by P to keep same resolution \Rightarrow implies narrowing the PLL loop bandwidth, which may be undesirable!

Basic prescaler
resolution degraded: $\mathrm{P} \times \mathrm{F}_{1}$
J. A De Lima - Introdução ao Projeto de CI's de Sinais Mistos CMOS

Pulse Swallowing Technique

- If S input pulses are swallowed the output period becomes longer by S reference periods
\Rightarrow overall frequency division-ratio is $M=(N P+S)$, which can be varied in unity steps by changing S
$M_{1}=(N P+S)$
$M_{2}=(N P+S+1)$
$\Rightarrow \Delta M=M_{2}-M_{1}=1$ (same resolution without prescaling!)

Programmable divider based on pulse swallowing.

- at beginning of counting, $\mathrm{N}+1$ factor is selected
in dual-modulus prescaler ($\mathrm{OUT}=1$)
- P and S count in parallel, with $\mathrm{P}>\mathrm{S}$
- when S overflows, set $=1$ and OUT $\rightarrow 0$
- N factor is selected in dual-modulus prescaler
- it remains like that until P overflows and OUT $\rightarrow 1$
- cycle is restarted.

total counts of Fout is a full F1 cycle:
$S \times(N+1)+(P-S) N$
$S N+S+P N-S N$
$P N+S=M$

frequency synthesizer with pulse swallowing technique
total counts of Fout is a full F1 cycle:
$\mathrm{S} \times(\mathrm{N}+1)+(\mathrm{P}-\mathrm{S}) \mathrm{N}$
SN + S + PN - SN
$P N+S=M$
J. A De Lima - Introdução ao Projeto de CI's de Sinais Mistos CMOS

Ex 1 (using pulsing swallowing):

- frequency synthesizer in $2400-2480 \mathrm{MHz}$ ISM band
- 1 MHz channel spacing \Rightarrow division factor $(M=N P+S)$
between 2400-2480

Design steps:

i) choice of the modulus N (dual-modulus prescaler), P (program counter) and S (swallow counter), with $P>S$
ii) assume that only S can vary to simplify channel-select logic.
iii) make either N or $\mathrm{N}+1$ a power of two
iv) choose S as low as possible so that $\mathrm{P}>\mathrm{S}$ is a minimum

Assuming initially S varies between 1 and 81 (to cover 81 possible division ratios) then $\mathrm{P}>81$:

$$
\mathrm{N}<\frac{\mathrm{M}-\mathrm{S}}{\mathrm{P}}=\frac{2399}{81}=29.6
$$

Choosing $\mathrm{N}=16 \Rightarrow \mathrm{P}=\frac{\mathrm{M}-\mathrm{S}}{\mathrm{N}}=\frac{2399}{16}=149 \quad$ and $\mathrm{P}>\mathrm{S}$
Design values for pulse swallower

N	P	S	M	$P>S$
16	149	16	2400	TRUE
16	149	96	2480	TRUE
32	75	0	2400	TRUE
32	75	80	2480	FALSE
32	76	48	2480	TRUE
22	109	2	2400	TRUE
22	109	82	2480	TRUE
9	256	96	2400	TRUE
9	256	176	2480	TRUE

J. A De Lima - Introdução ao Projeto de CI's de Sinais Mistos CMOS

$$
\begin{aligned}
& \mathrm{M}=(\mathrm{P} \times \mathrm{N})+\mathrm{S} \\
& M_{\text {MIN }}=(\mathrm{Pmin} \times N)+\text { Smin } \\
& =((N+1) \times N)+1 \\
& =N^{2}+N+1
\end{aligned}
$$

$M_{\text {MAX }}=(\operatorname{Pmax} \times N)+S m a x$
Pmax and Smax are determined by the size of P and S counters.

Mmin-Mmax: range over which it is possible to change N in discrete integer steps.

Ex2: assume that prescaler is programmed to $\mathrm{N} / \mathrm{N}+1=32 / 33$
S counter: 6 bits means S can be $2^{6}-1=63$
P counter: 13 bits means P can be $2^{13}-1=8191$

$$
\begin{aligned}
& M_{\text {MIN }}=N^{2}+N+1=1057 \\
& M_{\text {MAX }}=(\text { Pmax } \times N)+\text { Smax } \\
& =(8191 \times 32)+63=262175
\end{aligned}
$$

If $\mathrm{F}_{1}=10 \mathrm{KHz}$ and $\mathrm{P}=6000 ; \mathrm{S}=40$
Fout_min $=1.057 \mathrm{GHz}$
Fout_max $=2.62 \mathrm{GHz}$
$\mathrm{F}_{\text {out }}=\mathrm{F}_{1}(\mathrm{PN}+\mathrm{S})=10 \mathrm{KHz}(6000 \times 32+40)=1.92040 \mathrm{GHz}$
Fout1 $=\mathrm{F}_{1}(\mathrm{PN}+\mathrm{S}+1)=10 \mathrm{KHz}(6000 \times 32+41)=1.92041 \mathrm{GHz}$
Δ Fout $=10 \mathrm{KHz}$

(Differential) CMOS Current Mode Logic - (D)CML

- The main building block of the before-described counters is the D-type level-triggered latch

- CK swing has to be wide enough ($\mathrm{V}_{\mathrm{TH}}+\mathrm{V}_{\mathrm{GO}}$) to turn on pMOS. Since CK has a finite slope, this implies a certain delay before the latch is able to sense at CK transition \Rightarrow Differential CML for high-speed processing

Basic CML gate

D-type latch: (b) static CML

- CML is based on the use of differential stages
- tail current is switched between two branches by CK
- a regenerative pair holds the data when CK is low
- loads can be triode-operating or diode-connected PMOS.

Single-Ended vs Differential

Common-Mode disturbances disappear in the differential output

- small ΔV in already develops full Vout
J. A De Lima - Introdução ao Projeto de CI's de Sinais Mistos CMOS

CML x CMOS

Pros:
i) reduced voltage swing ($\mathrm{VGO}_{\mathrm{GO}}$ against $\mathrm{VGO}_{\mathrm{GO}}+\mathrm{Vth}_{\text {th }}$ of CMOS stages $) \Rightarrow$ less delay before input sensing \Rightarrow higher speed
ii) current-steering operation: current drained from supply less variable
iii) differential circuits are immune to coupled disturbances; they reject disturbances coming from substrate and power supply due to other blocks

Cons:
i) larger area
ii) 2 "wires" per signal
iii) higher consumption

- Emitter-Coupled Logic (origin)

J. A De Lima - Introdução ao Projeto de CI's de Sinais Mistos CMOS

- Emitter-Coupled Logic

ECL input/output characteristics.

CML AND / NAND gates

J. A De Lima - Introdução ao Projeto de CI's de Sinais Mistos CMOS

CML OR / NOR gates

J. A De Lima - Introdução ao Projeto de CI's de Sinais Mistos CMOS

Merged AND gate and D-type latch in CML logic

Buffer/Inverter

AND/NAND/OR/NOR

XOR3

