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ABSTRACT 

 
This works aims at providing an accurate and complete 

symbolic model of the MOS transistor useful for the early 
stages of design. The main idea is to extend the simple 
formalism of drift transport to include both diffusion and 
velocity-limited transport. This new concept is supported 
by a charge-based model, in which we substitute a virtual 
charge for the inversion charge density. The virtual charge 
is just the real inversion charge plus the pinch-off charge 
minus the saturation charge. A direct consequence of the 
definition of the virtual charge is strong inversion-like 
representation of currents, charges as well as small-signal 
parameters. 

 
Keywords: MOSFET, MOSFET model, charge-based 
model, symbolic model. 
 

1 INTRODUCTION 
 
The new generation of compact MOSFET models [1] 

provides accurate current, charge, capacitance and noise 
characteristics as numerical outputs of a rather complicated 
set of internal equations specific to each model. Numerical 
circuit simulation is a fundamental tool for circuit 
verification, but is not really useful in the early stages of 
design. Very simple models of the MOS transistor are 
customarily used at these stages, but they are not accurate, 
particularly for advanced technologies. This works aims at 
providing a new accurate and complete symbolic model of 
the MOS transistor useful for the early stages of design. 
The main idea behind this symbolic model is to preserve 
the simple formalism of strong inversion (SI) through a 
change of variable to render it capable of describing the 
actual transport including diffusion and saturation velocity 
effects. This new concept is supported by a charge-based 
model, in which we substitute a virtual charge for the 
inversion charge density. We will show that the virtual 
charge is the real inversion charge plus the pinch-off 
charge (diffusion increases the current) minus the 
saturation charge (velocity saturation reduces the current). 

 
2 DRAIN CURRENT 

 
The Pao-Sah expression for the drain current ID, which 

includes the effects of both drift and diffusion, is 

'
D I

dVI WQ
dy

μ= −  (1) 

where μ is the mobility, W is the transistor width,  is the 

inversion charge density, and 

'
IQ

dV dy  is the gradient of the 
channel voltage (quasi-Fermi level splitting). Two 
fundamental expressions used in our derivations are the 
approximate linear relationship between inversion charge 
density and the surface potential φS for a given VG

 

I ox SdQ nC dφ′ ′=  (2) 
 
along with UCCM [3] 
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where VP is the pinch-off voltage, φt is the thermal voltage 
and IP oQ nC x tφ′ ′= −  is the pinch-off charge, which depends 
on the gate voltage and on technological parameters, and n 
is the slope factor. Using approximations (2) and (3) in (1) 
we find that  
 

'
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dynC

μ
= −  (4) 

' ' '
It I oxQ Q nC tφ= −  (5) 
'
ItQ is the shifted (by the amount equal to '

ox tnC φ− ) 
inversion charge density. Assuming the mobility to be 
constant along the channel, the integration of (4) between 
source (y=0) and drain (y=L) yields 
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where  and are the values of '

FQ '
RQ '

ItQ  evaluated at 
source and drain, respectively. 

' ' '
( ) ( )F R IS D oxQ Q nC tφ= −  (7) 
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The (forward) saturation current ID0 and saturation 
coefficient α in (6) may be rewritten as 
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WQI
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=                  and (8) 

' ''
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φ
−
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 (9) 

The saturation coefficient α above is a generalization of 
the definition proposed in [2]. In effect, in SI and assuming 
zero bulk charge the relations given below hold.  
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Now, to calculate the effect of velocity saturation on the 

drain current, we follow the same procedure as that for the 
long-channel transistor. To obtain the new expression for 
the drain current we use the following approximation for 
the field-dependent mobility  
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Taking into account approximations (2), (3), and (11), 

the Pao-Sah equation of the drain current becomes  
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Equation (12) can be rewritten as 
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Expression (13) has very important properties. Firstly, 

because n depends only on VG, and ID is constant along the 
channel, we can define a virtual charge density that differs 
from the real charge along the channel by a constant term, 
i.e., 

 
' '

lim

D
V I ox t

IQ Q nC
W v

φ′= − +  (14) 

The last two terms in (14), constant along the channel, 
have clear physical meanings: '

ox tnC φ−  is the pinch-off 

charge and lim/DI Wv−  is the saturation charge, i.e., the 
minimum amount of carrier charge density required to 

sustain a channel current equal to ID. The virtual charge is 
the real inversion charge plus the pinch-off charge 
(diffusion increases the current) minus the saturation charge 
(velocity saturation reduces the current). From (14), the 
following equality holds along the transistor channel 

 

' IV dQdQ ′= . (15) 
 

Now, inserting (14) and (15) into (13), we find that 
 

0
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. (16) 

 
Using the basic linear relationship between  and φS 

given by 

'
IQ

(2), equation (16) becomes equivalent to 
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φ
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which corresponds to the drift-only current of the virtual 
charge . We can adopt the following definition for the 
virtual charge: The drift of the virtual charge produces the 
same current as the actual movement of the real charge, 
which includes drift, diffusion and velocity saturation. The 
use of the virtual charge allows us to extend the formalism 
of strong inversion to the general case of drift-diffusion 
plus velocity saturation. This result is similar to the one 
presented by Maher and Mead in [7]. 

'
VQ

The integration of (16) from source to drain results in 
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where, in this case the (forward) saturation current ID0 
and saturation coefficient α in (18) become 
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Clearly, (18) is not useful as a stand-alone expression 

for calculating the current because  depends on the 
current itself. Nevertheless, the expression of the current in 
terms of the virtual charges at source and drain is 
instrumental for deriving simple expressions of stored 
charges and capacitive coefficients that keep the drift-only 
transport formalism. Just for the sake of completeness, the 
drain current can be calculated from the integration of 

'
VQ

(12) 
between source and drain, yielding 
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3 STORED CHARGES 

 
The splitting of the inversion charge  

'

0

L

IQ W Q dy= ∫  (22) 

into the source and drain charges according to  

'
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as presented in [4]. Such a partitioning of the inversion 
charge density, based on charge conservation, is valid for 
the quasi-static model, where the charge distribution in the 
channel is given by the dc distribution calculated 
considering the instantaneous values of the terminal 
voltages.  

 
3.1 Long-channel transistor 

In the following, we derive the charge expressions for 
long-channel transistors and then include short-channel 
effects. All the information necessary to calculate the stored 
charges in the quasi-static approximation is available in the 
dc current model of the transistor. 

To derive the long-channel stored charges, we make 
. Then, substituting limv →∞ (5) and (13) into (22) yields: 
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The integration of (25) gives  
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 (26) 
To find the source and drain charges we first find y in 

terms of the shifted charge through the integration of (13) 
from the source (y=0) to an arbitrary point y of the channel, 
which gives (for ) limv →∞

( ' 2 ' 20

2 )F It
ox D

Wy Q
nC I

Qμ
=

′
−  (27) 

The expressions for the channel-related charges in terms 
of the source inversion charge density and the saturation 

coefficient α, are summarized in Table 1(for long-channel 
devices,  and limv →∞ 0LΔ → ). As seen in Fig. 1, in 
spite of their complicated aspect, the functions of the 
parameter α are well behaved, slightly varying functions in 
the physically meaningful interval 0<α≤ 1. These functions 
give, for a non uniform channel (0<VDS, or α<1), average 
values of the inversion charge density in the channel  

 

Fig. 1 Functions of the inversion coefficient α appearing in 
the channel charge expressions 

An approximate expression for the depletion charge, 
linear in terms of the inversion charge can also be readily 
obtained, as demonstrated in [3] 

 
1

B I B
nQ Q Q

n aWL− ′= − +  (28) 

 

BaQ′  is the depletion charge density deep in weak 
inversion. The stored charges in terms of the gate voltage 
are shown in Fig. 2. 

 
3.2 Short-channel transistor 

To calculate the total inversion charge, the channel is 
split into the saturated and non-saturated regions. In the 
saturated region the inversion charge density is assumed to 
be constant; therefore, the inversion charge is given by 

 

0
L L

I IQ W Q dy W LQ−Δ
IDsat′ ′= + Δ∫  (29) 

 
where lim/IDsat DQ I Wv′ = −  is the minimum amount 

of carrier charge density to sustain a channel current equal 
to ID and LΔ  is the channel-length shortening. To 
determine the inversion charge in (29) we calculate  in 

terms of  by means of 

'
IQ

'
VQ (14) and y in terms of  using '

VQ
(16), which yields the total inversion charge presented in 
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Table 1. The source and drain charges can be determined in 
a similar way, resulting in the values given in Table 1. 

 

Fig. 2 The charges at the gate (QG), source (QS), drain (QD) 
and bulk (QB) terminals versus VB G for an NMOS transistor 

with W/L=10um/0.8um. (VD=2V, VS=0V) 

The effect of velocity saturation is an increase in the 
absolute values of the total inversion charges in saturation 
as a consequence of the non zero charge density at the drain 
end. This effect is illustrated in Fig. 3 where the source and 
drain charges considering velocity saturation are plotted 
together with the charges obtained from the long channel 
model.  

 

Fig. 3 Source and drain charges versus drain voltage for 
long-channel device and for short-channel device [6] 

 
4 CAPACITIVE COEFFICIENTS 

 
The four-by-four matrix of the MOSFET intrinsic 

capacitances for quasi-static operation is defined according 
to 

     / /
      / / 

/      /  
//         

gd gbgg gsG G

sd sbsg ss SS

db Ddg ds ddD

BB bg bs bd bb

C C C CdQ dt dV dt
C CdtdQ dV dtC C

dV dtC C CdQ dt C
dV dtdQ dt C C C C

−⎛ ⎞− −⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟− − −⎜ ⎟⎜ ⎟ ⎜ ⎟= ⎜ ⎟⎜ ⎟ ⎜ ⎟− − −⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠ − − −⎝ ⎠

 (30) 
Only nine out of the sixteen capacitive coefficients in 

(30) are linearly independent, due to charge conservation 
and charge transfer dependence on voltage differences only 
[Tsividis 99].  

An appropriate set (among many) of capacitive 
coefficients is represented by equations (31) and (32). The 
circuit equivalent to equations (31) is presented in Fig. 4. 

         

          

GS GD GBG
gs gd gb

BG BGB
gb mx bs

BD
bd

BS

DG DBD
gd bd m

DB SB
sd ds

dQ d d dV VC C Cdt dt dt dt
dQ d d dV VC C Cdt dt dt dt

dVC dt
dQ d d dV VC C Cdt dt dt dt

d dV VC Cdt dt

= + +

= + +

+

= + −

+ −

GB

V

V

V

 (31) 

where 
m dg gd

mx bg gb

C C C
C C C

= −

= −
 (32) 

 

 
 

Fig. 4 Quasi-static small-signal model for the charging 
currents of the MOS transistor 

 
The determination of the capacitive coefficients in (30) 

requires calculating the derivatives of charges wrt voltages.  
Let us first write the charge balance equation. 
 

( ) 'I
G I B OX Ba

QQ Q Q Q Q WL Q
n

= − + + = − − − OX  (33) 
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Capacitances Cgs and Cgd can be obtained deriving the 
gate charge in (33) wrt VS(D)

 ,,yielding 
 

( )
( ) ( )

1G I
gs d

S D S D

Q Q
C

V n V
∂

∂ ∂
∂

= − =  (34) 

 
The remaining capacitances can be calculated in a 

similar fashion. The results for the capacitive coefficients 
are given in Table 2. 

Some comments about the capacitive model of the 
MOSFET are timely: (i) when the variation of n with VG is 
assumed to be negligible, then Cgb=Cbg and the simplified 
set of eight capacitive coefficients in Table 2 results; (ii) 
gms, gmd, and gmg  are the source, drain, and gate 
transconductances, respectively; (iii) The use of the 
generalized saturation coefficient α allows a very compact 
formulation of the capacitive coefficients. 

 
Fig. 5. Normalized gate-to-source and gate-to-drain 

capacitances versus drain voltage 

 

Fig. 6 Gate-to-bulk capacitance with and without the effect 
of velocity saturation [6] 

Fig. 5 shows Cgs and Cgd, normalized to the gate 
capacitance Cox, versus VD, calculated according to the 
expressions of Table 2. These capacitances saturate for 
lower VDS values when we include velocity saturation, 
which is consistent with the reduced value of VDSsat 
obtained when velocity saturation is considered. The plots 
of other capacitive coefficients are shown in Figs. 6 and 7. 
In all cases the effect of velocity saturation is to make 
capacitances vary more gradually as compared to the long-
channel case.  

Fig. 7 Drain charge related capacitances calculated with 
(…) and without (____) carrier velocity saturation [6]. 
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Table 1 Total inversion, source and drain charges as a function of the inversion charge density at source and the saturation coefficient α 
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Table 2 Intrinsic (trans)capacitances 

 
Variable Expression 
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(*) Cgso and Cgdo are the first terms in Cgs and Cgd, respectively 
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