THE ADVANCED COMPACT MOSFET (ACM) MODEL AND ITS APPLICATION TO THE DESIGN AND SIMULATION OF BASIC CIRCUITS

Presentation by Márcio Cherem Schneider

Lima - September 2024

CONTENTS:

- **0. Introduction**
- 1. The MOS capacitor
- 2. The three-terminal MOS structure
- 3. The NMOS transistor
- 4. The physical quantities of the long-channel model
- 5. The Unified Charge Control Model (UCCM)
- 6. The Unified Current Control Model (UICM)
- 7. Drain-Induced Barrier Lowering (DIBL)
- 8. The 4-PM of the ACM model
- 9. Velocity saturation
- 10. The 5-PM of the ACM model
- **11. Small-signal transconductances**
- **12. Quasi-static AC model**
- **13. Extraction of parameters**

Lima - September 2024

What is a compact model ?

- Compact Model is the medium of information exchange between foundry and designer.
- Provides detailed information about device operation & characteristics
- However, needs to be:
 - **Simple** enough to be incorporated in circuit simulators
 - Accurate enough to predict behavior of circuits

Why the need for a design-oriented MOSFET model ?

- Provides a proper bridge between the electrical behavior of the MOSFET and circuit performance though simple analytical equations
- Allows analytical sizing of the transistors
- Avoids excessive dependency of the IC designer in using parametric simulations

with complex models to define the operation point!

Why the need for a design-oriented MOSFET model ?

- Provides a proper bridge between the electrical behavior of the MOSFET and circuit performance though simple analytical equations
- Allows analytical sizing of the transistors
- Avoids excessive dependency of the IC designer in using parametric simulations
- Increase the designer intuition!

IC designers bridge

- Provides detailed information about device operation & characteristics
- Computationally intensive
 - EM simulation, drift-diffusion eqns., numerical solution of PDEs, etc.

- Simple enough to be incorporated in circuit simulators
- Accurate enough to have predictive value for circuits

T. Wang and J. Roychowdhury, University of California at Berkeley

Family of BSIM models: popular MOSFET models for circuit simulators

 BSIM DC models: equations characterized by several tens of
Compact models with reduced number of DC parameters parameters.

make easier the understanding of the MOSFET.

- Understanding of a compact DC model improves designers' skills and abbreviates considerably time spent on simulations.
- The simple 5-PM (5-parameter model) version of the ACM model: successfully simulation of MOS circuits.

This presentation: the 5-PM of the (DC) ACM model, the MOSFET small-signal model, noise and mismatch

Table 1 – Input parameters.

NAME	DESCRIPTION	UNIT
W	channel width	m
L	channel length	m
IS	specific current	А
VT0	threshold voltage	V
n	slope factor	-
Sigma	DIBL coefficient	
Zeta	velocity saturation related parameter	_

NAME	DESCRIPTION	
umob	carrier mobility	m^2/Vs
Cox	oxide capacitance per unit area	F/m^2
tox	oxide thickness	m
e0	Permittivity of vaccum	F/m
eox	Permittivity of silicon dioxide	F/m
VP	pinch-off voltage	V
PhiT	thermal voltage	V
gm	gate transconductance	A/V
gms	source transconductance	A/V
gmd	drain transconductance	A/V
alpha	channel linearity factor	5
QI	total inversion charge	С
QB	total bulk charge	С
QG	total gate charge	C
QD	total drain charge	С
QS	total source charge	С
QID	drain charge density	С
QIS	source charge density	C
qD	normalized drain charge density	
qS	normalized source charge density	
Cgs	gate-to-source capacitance	F
Cgd	gate-to-drain capacitance	F
Csd	source-to-drain capacitance	F
Cds	drain-to-source capacitance	F
Cgb	gate-to-bulk capacitance	F
Cbd	bulk-to-drain capacitance	F
Cbs	bulk-to-source capacitance	F

1. The MOS capacitor

https://www.wisdomjobs.com/userfiles/structure_of_mosfet.jpg

1. The MOS capacitor

The "ideal" two-terminal MOS structure

- charge/ unit area
- N_A acceptor concentration

What's the electric field E_{ox} inside the oxide?

Example 1.1 : oxide capacitance

- (a) Calculate the oxide capacitance per unit area for t_{ox} = 5 and 20 nm. The permittivity of silicon oxide is ε_{ox} = 3.9 ε_0 . ε_0 = 8.85-10⁻¹⁴ F/cm is the permittivity of free space.
- (b) Determine the area of a 1pF metal-oxide-metal capacitor for the two oxide thicknesses given in (a).
- (c) Determine the gate charge/unit area in C/cm² and the number of elementary charges/ μ m² of the 1 pF capacitor for V_G - ϕ _S =1 V

Answer: (a) $C_{ox} = 690 \text{ nF/cm}^2 = 6.9 \text{ fF/}\mu\text{m}^2$ for $t_{ox}=5 \text{ nm}$ and $C_{ox} = 172 \text{ nF/cm}^2 = 1.7 \text{ fF/}\mu\text{m}^2$ for $t_{ox}=20 \text{ nm}$. (b)The capacitor areas are 145 and 580 μm^2 for oxide thicknesses of 5 and 20 nm, respectively. (c) $0.69 \cdot 10^{-6} \text{ C/cm}^2$ and $0.43 \cdot 10^{5} / \mu\text{m}^2$ for capacitor area of 145 μm^2 and $0.17 \cdot 10^{-6} \text{ C/cm}^2$ and $0.11 \cdot 10^5 / \mu\text{m}^2$ for capacitor area of 580 μm^2 .

Example 1.2: volumetric and areal charge densities

Assume that the electron concentration is $n = 10^{16} \text{ cm}^{-3}$, L=W=1 um, t=0.1 um

- (a) Calculate the volumetric charge density
- (b) Calculate the total number of electrons and the corresponding charge inside the volume
- (c) Calculate the (areal) charge density seen from the x-direction (seen from above)

Answer: (a) ρ = -1.6 10⁻³ C/cm³ (b) Number of electrons = 10³, charge = -1.6 x 10⁻¹⁶ C (c) charge density Q_n= -1.6 x 10⁻⁸ C/cm².

1. The MOS capacitor

Lima - September 2024

Regions of operation of the MOSCAP:

Inversion (p-substrate)

$$\phi_{s} > \phi_{F} \ Q_{S} < 0$$

 ϕ_F : Fermi potential

Lima - September 2024

Regions of operation of the MOSCAP -**Inversion (p-substrate):** $\phi_s > \phi_F \quad \phi_F$ is the Fermi potential

$$p = N_a e^{-\frac{q\phi(x)}{kT}}$$
$$n = \frac{n_i^2}{N_a} e^{\frac{q\phi(x)}{kT}}$$

$$n\left(\phi=\phi_{F}\right)=n_{i}=\frac{n_{i}^{2}}{N_{a}}e^{\frac{q\phi_{F}}{kT}}\rightarrow\phi_{F}=\frac{kT}{q}\ln\frac{N_{a}}{n_{i}}$$

The semiconductor operates in inversion when $\phi_S > \phi_F$

For $\phi > \phi_F$ the concentration of minority carriers (*n*) at the semiconductor-oxide interface becomes higher than that of majority carriers (*p*); the semiconductor operates in the inversion region **Strong inversion :** the concentration of minority carriers (*n*) becomes higher than that of holes (majority carriers) deep in the bulk

$$p = N_a e^{-\frac{q\phi(x)}{kT}}$$
$$n = \frac{n_i^2}{N_a} e^{\frac{q\phi(x)}{kT}}$$

$$n = N_a = \frac{n_i^2}{N_a} e^{\frac{q\phi}{kT}} \rightarrow \phi = 2\frac{kT}{q} \ln \frac{N_a}{n_i} = 2\phi_F$$

The semiconductor operates in strong inversion when $\phi_S > 2\phi_F$

Operating regions of the MOSCAP: Summary (I)

Lima - September 2024

Operating regions of the MOSCAP: Summary (II)

Positive charge (holes or deficiency of electrons) density

- **Carrier (electron) charge density**
- **Depletion (ion) charge density**

Lima - September 2024

The threshold voltage

Example 1.3: threshold voltage

Estimate V_T for an n-channel transistor with $N_A = 10^{17}$ atoms/cm³ and $t_{ox} = 5$ nm. The flat-band voltage is -0.58 V. $\phi_F = \phi_t \ln \frac{N_A}{n_i} \approx 26 \times \ln \frac{10^{17}}{10^{10}} = 419 \text{ mV}; \ C_{ox} = \frac{\mathcal{E}_{ox}}{t_{ox}} = \frac{0.345 \times 10^{-12}}{5 \times 10^{-7}} = 690 \times 10^{-9} \text{ F/cm}^2$

The body-effect factor is

$$\gamma = \sqrt{2q\varepsilon_s N_A} / C_{ox} = \frac{\sqrt{2 \times 1.6 \times 10^{-19} \times 1.04 \times 10^{-12} \times 10^{17}}}{690 \times 10^{-9}} = 0.264 \sqrt{V}$$

The threshold voltage is

$$V_T \cong V_{FB} + 2\phi_F + \gamma\sqrt{2\phi_F} = -0.58 + 0.838 + 0.264\sqrt{0.838} = 0.5V$$

NOTE: In some technologies there are transistors with V_T close to zero, which are called native or zero-VT transistors

1. The MOS capacitor

Lima - September 2024

1. The MOS capacitor

Since ACM is charge-based model, the threshold voltage is modified to

$$n = 1 + \frac{\gamma}{2\sqrt{2\phi_F}} = 1.144, \quad C_{ox} = 690 \ nF/cm^2, \phi_t = 25.9 \text{ mV}$$

Carrier concentrations in Si substrate follow Boltzmann's law: $n, p \propto \exp(-Energy/kT)$

The origin of potential ϕ is taken deep in the bulk

$$p = p_0 e^{-\frac{q\varphi}{kT}}; \quad n = n_0 e^{\frac{q(\varphi - V_C)}{kT}}$$

Electrons are no longer in equilibrium with holes due to the bias of the source-bulk junction V_C

$$pn = n_i^2 e^{-V_C/\varphi_t}$$

Lima - September 2024

Unified Charge Control Model (UCCM)

$$dQ_{I}\left(\frac{1}{nC_{ox}} - \frac{\phi_{I}}{Q_{I}}\right) = dV_{C}$$
$$n = 1 + \frac{C_{b}}{C_{ox}} = n(V_{G})$$
$$Q_{IP} = Q_{I}|_{V_{C} = V_{P}}$$

Integrating from an arbitrary channel potential V_C to a reference potential V_P (pinch-off) yields UCCM

$$V_P - V_C = \phi_t \left[\frac{Q_{IP} - Q_I}{nC_{ox}\phi_t} + \ln\left(\frac{Q_I}{Q_{IP}}\right) \right]$$

Choosing the thermal charge as the pinch-off charge

$$Q_{IP} = -nC_{ox}\phi_t \quad \Longrightarrow^{**} V_P \cong \frac{V_{GB} - V_T}{n}$$

The normalized inversion (areal) charge density is

$$\frac{Q_I}{Q_{IP}} = q_I$$

Normalized UCCM

$$\frac{V_P - V_C}{\phi_t} = q_I - 1 + \ln q_I$$

**

This is an approximate value of V_P, which is very useful for first order calculations

Unified Charge Control Model (UCCM)

The "regional" strong and weak inversion approximations

$$V_P - V_C = \phi_t \left[\frac{Q_{IP} - Q_I}{nC_{ox}\phi_t} + \ln\left(\frac{Q_I}{Q_{IP}}\right) \right]$$

$$V_P \cong \frac{V_G - V_T}{n}$$

 $|Q_I| \gg Q_{IP}$

strong inversion

$$-Q_I \cong nC_{ox}\left(\frac{V_G - V_T}{n} - V_C\right)$$

 $|Q_I| \ll Q_{IP}$ weak inversion $\frac{V_{GB} - V_T}{n} - V_C \cong \phi_t \left[\ln \left(\frac{Q_I}{Q_{IP}} \right) - 1 \right]$

or, equivalently

$$Q_I = Q_{IP} e^{\frac{V_G - V_T}{n} - V_C + \phi_t}_{\phi_t}$$

Note: expressions above can be referred to bulk potential $\neq 0$

$$\implies \bigvee_{V_{C} \to V_{CB}}^{V_{G} \to V_{GB}}$$

Lima - September 2024

3. The NMOS Transistor

(a) NMOS transistor symbol (b) NMOS transistor structure (c) cross section

Technology

180 nm

65 nm

Xj

3. The NMOS Transistor

NMOS Transistor = NMOSCAP + source & drain terminals

In general, bulk-to-source & bulk-to-drain diodes are reverse (or zero) biased. Thus

$$i_{G} = 0$$
$$i_{B} = 0$$
$$i_{D} = i_{S}$$

Q_s (semiconductor charge density) =

Lima - September 2024

Q_N (carrier charge density)+ Q_D (ion charge density) fixed

3. The NMOS Transistor

4. The physical quantities of the long-channel DC model

Physical quantities

Terminal voltages V_S, V_D, V_G, V_B

Charge densities

- Q₁ (carrier charge density)
- **Q**_B (ion charge density)
- Q_{IS} (carrier charge density at source)
- Q_{ID} (carrier charge density at drain)

Currents

- I_D (drain current)
- I_F (forward current)
- I_R (reverse current)

4. The physical quantities of the long-channel DC model

Lima - September 2024

$$V_P - V_C = \frac{Q_{IP} - Q_I}{nC_{ox}} + \varphi_t \ln\left(\frac{Q_I}{Q_{IP}}\right)$$

UCCM

 $\frac{V_P - V_C}{\varphi_t} = q_I - 1 + \ln q_I$ Normalized UCCM

The "Regional" Weak (WI) and Strong Inversion (SI) Approximations

Error <10% for $q_I < 0.22$

Error <10% for $q_I > 20$

 $0.22 < q_I < 20$ Moderate inversion

$$V_P - V_{S(D)B} = \frac{Q_{IP} - Q_{IS(D)}}{nC_{ox}} + \varphi_t \ln\left(\frac{Q_{IS(D)}}{Q_{IP}}\right)$$

UCCM at source (drain)

$$\frac{V_P - V_{S(D)B}}{\varphi_t} = q_{S(D)} - 1 + \ln q_{S(D)}$$

Normalized UCCM at source (drain)

The pinch-off voltage
$$V_P$$

$$V_P = \left[\sqrt{V_G - V_{T0} + \left(\sqrt{2\phi_F} + \frac{\gamma}{2}\right)^2} - \frac{\gamma}{2}\right]^2 - 2\phi_F$$

Useful approximation:

$$V_P \cong \frac{V_{GB} - V_{T0}}{n}$$

Use of UCCM applied to an NMOS transistor. Parameters: n=1.25, C_{ox} = 1 uF/cm², ϕ_t = 26 mV, V_T = 0.5 V, W=L= 1 um. Complete the table below.

$$\frac{V_P - V_{S(D)B}}{\varphi_t} = q_{S(D)} - 1 + \ln q_{S(D)}$$

$$V_P \cong \frac{V_{GB} - V_{T0}}{n}$$

$V_{GB}(\mathbf{V})$	$V_P(\mathbf{V})$	$V_{DB}(\mathbf{V})$	q _s (-)	q _D (-)
318 m	-146 m	0	0.01	0.01
461 m	-31 m	97 m	0.5	0.05
500 m	0	86.3 m	1	0.1
600 m	80 m	36 m	3	2
867 m	241 m	95.2 m	10	5
1.55	842 m	408 m	30	15

Pinch-off voltage and slope factor vs. gate voltage

Lima - September 2024

With charge density normalization
$$q_{S(D)} = Q_{IS(D)}/(-nC_{ox}\phi_t)$$
$$I_D = \frac{\mu_n W}{L} \left[\frac{Q_{IS}^2 - Q_{ID}^2}{nC_{ox}} - \phi_t (Q_{IS} - Q_{ID}) \right]$$
 is written as
$$I_D = I_S [(q_S^2 + 2q_S) - (q_D^2 + 2q_D)]$$
(A)

$$I_S = \mu_n C_{ox} n \frac{\phi_t^2}{2} \frac{W}{L} = \frac{W}{L} I_{SH} = S I_{SH}$$

 I_S : specific (normalization) current I_{SH} : sheet specific current S: aspect ratio

(A)

(A) can also be written as

$$I_D = I_F - I_R = I_S [i_f - i_r]$$

 I_F, I_R

: forward and reverse currents

 $i_{f(r)} = q_{S(D)}^2 + 2q_{S(D)}$

: forward (reverse) inversion coefficients

Use of UICM applied to an NMOS transistor. Parameters: n=1.25, C_{ox}= 1 uF/cm², ϕ_t = 26 mV, V_T = 0.5 V, W=L= 1 um. Complete the table below.

$$\frac{V_P - V_{S(D)B}}{\varphi_t} = -\left[\sqrt{1 + i_{f(r)}} - 2 + \ln\left(\sqrt{1 + i_{f(r)}} - 1\right)\right] \qquad V_P \cong \frac{V_{GB} - V_{T0}}{n}$$

$V_{GB}(\mathbf{V})$	$V_P(\mathbf{V})$	$V_{DB}(\mathbf{V})$	q _s (-)	q _D (-)	i _f	i _r
318 m	-146 m	0	0.01	0.01	0.02	0.02
461 m	-31 m	97 m	0.5	0.05	1.25	0.102
500 m	0	86.3 m	1	0.1	3	0.21
600 m	80 m	36 m	3	2	15	8
867 m	241 m	95.2 m	10	5	120	35
1.55	842 m	408 m	30	15	960	255

6. The Unified Current Control Model (UICM) Long-channel dc model: forward and reverse components of the current

The specific (normalization) current

Typical values of I_{SH} of long/wide channel MOSFETs

Technology	NMOSFET	PMOSFET	
350 nm	75 nA	25 nA	
180 nm	100 nA	40 nA	
65 nm	150 nA	50 nA	

$$I_S = \mu C_{ox} n \frac{\phi_t^2}{2} \frac{W}{L} = I_{SH} \frac{W}{L}$$

Sheet specific current of PMOS transistor 0.35 μm CMOS technology

Fig. 2.9 Common-gate characteristics of NMOS transistor (*t_{ox}*=280 Å, *W*=*L*=25 μm) in saturation (*V_G*=0.8, 1.2, 1.6, 2.0, 2.4, 3.0, 3.6, 4.2, 4.8 V). (—) simulated and (O) measured data.

Long-channel dc model:Universal output characteristics

(I)
$$\frac{\frac{V_{GB} - V_{T0}}{n} - V_{S(D)B}}{\phi_t} = \sqrt{1 + i_{f(r)}} - 2 + \ln\left(\sqrt{1 + i_{f(r)}} - 1\right)$$

The application of (I) to source and drain gives:

$$\frac{V_{DS}}{\phi_t} = q_S - q_D + \ln \frac{q_S}{q_D} = \sqrt{1 + i_f} - \sqrt{1 + i_r} + \ln \left(\frac{\sqrt{1 + i_f} - 1}{\sqrt{1 + i_r} - 1}\right)$$

Lima - September 2024

Long-channel dc model: The saturation voltage

Lima - September 2024

Long-channel dc model: Weak inversion

E. Vittoz, "MOS Transistor: Model and Modes of Operation," Course on Advanced Analog 56 CMOS IC Design, 2019

Lima - September 2024

Long-channel dc model: $V_P(V_G) \& n(V_G)$

6. The Unified Current Control Mode (UICM) The I-V relationship (NMOS & PMOS)

$$\frac{V_{P} - V_{S(D)B}}{\phi_{t}} = q_{IS(D)} - 1 + \ln q_{IS(D)}$$
Normalized UCCM
$$i_{f(r)} = q_{IS(D)}^{2} + 2q_{IS(D)}$$
Normalized i-q relationship
$$q_{IS(D)} = \sqrt{1 + i_{f(r)}} - 1$$

$$\frac{V_{GB} - V_{T0}}{n} - V_{S(D)B}}{\phi_{t}} = \sqrt{1 + i_{f(r)}} - 2 + \ln\left(\sqrt{1 + i_{f(r)}} - 1\right)$$
NMOS
Normalized UICM
$$UICM = Unified Current Control Model$$

$$-\left(\frac{V_{GB} - V_{T0}}{n} - V_{S(D)B}}{\phi_{t}}\right) = \sqrt{1 + i_{f(r)}} - 2 + \ln\left(\sqrt{1 + i_{f(r)}} - 1\right)$$
PMOS

6. The Unified Current Control Mode (UICM) Circuit #1: PTAT voltage generator using an MOS voltage divider

In weak inversion,

C. Rossi, C. Galup-Montoro and M.C. Schneider, <u>"PTAT voltage</u> generator based on an MOS voltage divider", Proceedings of Nanotech 2007, pp. 626- 629, May 2007.

Lima - September 2024

E. Vittoz and O. Neyroud, "A low-voltage CMOS bandgap reference," Solid-State Circuits, IEEH.ima - September 2024 Journal of, vol. 14, no. 3, pp. 573–579, 1979.

61

Circuit #3: Resistorless sub-bandgap voltage reference

OSAKI et al.: 1.2-V SUPPLY, 100-NW, 1.09-V BANDGAP AND 0.7-V SUPPLY, 52.5-NW, 0.55-V SUB-BGR CIRCUITS FOR NANOWATT CMOS LSIS IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 48, NO. 6, JUNE 2013

Lima - September 2024

6. The Unified Current Control Mode (UICM) Circuit #4: Self-Biased Current Source (SBCS)

7. Drain-Induced Barrier Lowering (DIBL)

8. The 4-PM of the ACM model 0.18 um CMOS technology

Transistor	Slow		Nominal		Fast	
	NMOS	PMOS	NMOS	PMOS	NMOS	PMOS
V _{TO} [mV]	316	-239	291	-211	266	-183
Is [nA]	99	35	111	40	124	45
n	1.19	1.18	1.20	1.18	1.22	1.17
$\sigma[\frac{mV}{V}]$	5.9	18	5.9	18	5.9	19

Table 1. Extracted parameters for medium- V_T NMOS/PMOS transistors with $\frac{W}{L} = \frac{1 \ \mu m}{1 \ \mu m}$.

Table 2. Extracted parameters for medium- V_T NMOS/PMOS transistors with $\frac{W}{L} = \frac{1 \ \mu m}{0.3 \ \mu m}$.

Transistor	Slow		Nominal		Fast	
	NMOS	PMOS	NMOS	PMOS	NMOS	PMOS
V _{TO} [mV]	338	-272	311	-239	283	-206
Is [nA]	313	81	420	106	543	137
n	1.24	1.17	1.23	1.18	1.22	1.17
$\sigma[\frac{mV}{V}]$	14	19	14	20	14	20

Figure 8. $I_D \times V_{GS} @V_{DS} = 200 \text{ mV}$ for (a) medium (nominal) V_T long-channel NMOS and (b) PMOS transistors and for (c) medium (nominal) V_T short-channel NMOS and (d) PMOS transistors.

Lima - September 2024

Figure 9. $I_D \times V_{DS} @ V_{GS} = 200 \text{ mV}$ for (a) medium (nominal) V_T long-channel NMOS and (b) PMOS transistors and for (c) medium (nominal) V_T short-channel NMOS and (d) PMOS transistors.

Lima - September 2024

Figure 12. Voltage-transfer characteristics of the CMOS inverter using BSIM and the 4PM across the corners of process variation. (a) $V_{DD} = 100 \text{ mV}$. (b) $V_{DD} = 300 \text{ mV}$.

Circuit #5: Common-source amplifier – Sizing and biasing

Input specs: gain-bandwidth product (*GB*), load capacitance (*C_L*), fixed channel length (*L*) Assumptions: ideal input voltage source, $C_{gd}=0$ $\omega_{\mu} = 2\pi GB = g_m / C_L$

$$g_{m} = \frac{2I_{S}}{n\phi_{t}} \left(\sqrt{1 + \frac{T_{B}}{I_{S}}} - 1 \right) \qquad I_{S} = I_{SH}(W/L)$$

How would you choose I_B and $I_S(W)$?

Lima - September 2024

9. Velocity saturation

$$\mu \cong \frac{\mu_s}{1 + \frac{F}{F_C}} \qquad \qquad \frac{\nu_{sat}}{\mu_s} = F_C$$

 F_C : critical longitudinal field

 μ_s : low-field mobility

Carrier velocity vs. electric field

Approximation

$$v = \mu F \cong \frac{\mu_s F}{1 + \frac{F}{F_c}}$$

allows analytical integration for I_D

Lima - September 2024
9. Velocity saturation

$$i_{D} = \frac{I_{D}}{I_{S}} = (q_{S} + q_{D} + 2)(q_{S} - q_{D})$$
 for low electric field $F << F_{C}$
or, equivalently
$$i_{D} = \frac{(q_{S} + q_{D} + 2)(q_{S} - q_{D})}{1 + \zeta |q_{S} - q_{D}|}$$
Mobility degradation due to

Nobility degradation due to longitudinal electric field

: ratio of diffusion-related velocity to saturation velocity

9. Velocity saturation

Saturation current due to velocity saturation of the carriers

The minimum amount of (electron) charge flowing at the saturation velocity, required to sustain the current:

 $Q_{IDsat} = -I_{Dsat}/Wv_{sat}$

Lima - September 2024

9. Velocity saturation

Lima - September 2024

5 DC parameters of the ACM model

I _S	IS	specific current	A
V _{T0}	VT0	threshold voltage	V
n	n	slope factor	-
σ	Sigma	DIBL coefficient	- (mV/V)
ζ	Zeta	velocity saturation related parameter	-

Modified UCCM for inclusion of saturation velocity

$$\frac{V_P - V_{SB}}{\varphi_t} = q_S - 1 + \ln q_S$$

$$\frac{V_{DS}}{\varphi_t} = q_S - q_D + \ln[\frac{q_S - q_{Dsat}}{q_D - q_{Dsat}}]$$

DIBL model: $V_T = V_{T0} - \sigma(V_{SB} + V_{DB})$

Transistor	W/L (μm/μm)	V_{T0} (mV)	$I_{S}(\mu A)$	n	σ	ζ
NMOS2V	5/0.18	528	5.52	1.37	0.025	0.056

Lima - September 2024

ACM 4-parameter model

Transistor	NMOS	PMOS		
V _{TO} [mV]	309	-269		
I_S [nA]	280	89		
n	1.24	1.25		
$\sigma[\frac{mV}{V}]$	15	23		

CMOS inverter: (a) Voltage transfer characteristic (VTC), (b) small-signal gain and (c) short-circuit current for BSIM and ACM models

For
$$V_{DS} / \phi_t <<1$$
 we have $i_f \cong i_r$

$$\frac{g_m}{I_D} \cong \frac{1}{n\phi_t \sqrt{1+i_f}}$$

In saturation $i_f >> i_r$

$$\frac{g_m}{l_D} \cong \frac{2}{n\phi_t(\sqrt{1+i_f}+1)}$$

The low-frequency small-signal model

11. Small-signal transconductances Low-frequency small-signal model in weak inversion

Lima - September 2024

Low-frequency small-signal model in saturation

Lima - September 2024

g_{ms}/I_F (in saturation)

Transconductance -to-current ratio

Saturation: $I_D = I_F$

Long-channel MOSFET model at a glance

$$I_D = I_S[i_f - i_r]$$

$$I_S = \mu C_{ox} n \frac{\phi_t^2}{2} \frac{W}{L} = I_{SH} \frac{W}{L}$$

$$V_P - V_{S(D)} = \phi_t \left[\sqrt{1 + i_{f(r)}} - 2 + \ln \left(\sqrt{1 + i_{f(r)}} - 1 \right) \right] V_P \simeq \frac{V_G - V_{T0}}{n}$$

$$g_{ms(d)} = \frac{2I_S}{\phi_t} \left(\sqrt{1 + i_{f(r)}} - 1 \right) = \frac{W}{L} \mu n C_{ox} \phi_t \left(\sqrt{1 + i_{f(r)}} - 1 \right)$$

$$g_m = \frac{g_{ms} - g_{md}}{n}$$

$$\frac{g_m}{I_D} = \frac{2}{n\phi_t(\sqrt{1+i_f} + \sqrt{1+i_r})}$$

Output conductance in saturation

Relationship between Early voltage and DIBL parameter

The Early voltage: independent of the current in WI and increases in SI

Gate transconductance in saturation

Quasi-static approximation: The charge stored in the transistor depends only on the **instantaneous** terminal voltages

The current entering each terminal of the transistor is split into a transport component (I_T) and a capacitive charging term.

Ward-Dutton partition of the channel charge (based on charge conservation):

$$Q_S = W \int_0^L (1 - \frac{y}{L}) Q_I dy$$

$$Q_D = W \int_0^L \frac{y}{L} Q_I dy$$

Once the four terminal charges Q_D , Q_S , Q_{G_1} , Q_B are calculated, the device capacitances can be determined

The charge variation at each terminal is

$$\frac{dQ_{j}}{dt} = \frac{\partial Q_{j}}{\partial V_{G}} \frac{dV_{G}}{dt} + \frac{\partial Q_{j}}{\partial V_{S}} \frac{dV_{S}}{dt} + \frac{\partial Q_{j}}{\partial V_{D}} \frac{dV_{D}}{dt} + \frac{\partial Q_{j}}{\partial V_{B}} \frac{dV_{B}}{dt}$$
Defining
$$C_{jk} = -\frac{\partial Q_{j}}{\partial V_{k}}\Big|_{0} \qquad j \neq k \qquad C_{jj} = \frac{\partial Q_{j}}{\partial V_{j}}\Big|_{0}$$

$$\begin{pmatrix} dQ_{G}/dt \\ dQ_{S}/dt \\ dQ_{D}/dt \\ dQ_{B}/dt \end{pmatrix} = \begin{pmatrix} C_{gg} - C_{gs} - C_{gd} - C_{gb} \\ -C_{sg} - C_{ss} - C_{sd} - C_{sb} \\ -C_{dg} - C_{ds} - C_{db} \\ -C_{bg} - C_{bs} - C_{bd} - C_{bb} \end{pmatrix} \begin{pmatrix} dV_{G}/dt \\ dV_{D}/dt \\ dV_{B}/dt \end{pmatrix}$$

Only nine out of the sixteen capacitive coefficients are linearly independent

Lima - September 2024

For
$$V_G(t) = V_S(t) = V_D(t) = V_B(t) = V(t)$$

Similarly, for the source, drain, and bulk

$$interpretation = V_B(t) = V(t)$$

$$interpretation = V(t)$$

$$interpretation = V(t)$$

$$interpretation = V(t)$$

$$interpretation = V_B(t)$$

$$interpretation = V(t)$$

$$interpretation = V_B(t)$$

$$interpretation =$$

For
$$\frac{dV_S}{dt} = \frac{dV_D}{dt} = \frac{dV_B}{dt} = 0$$

 $\frac{dQ_G}{dt} = C_{gg} \frac{dV_G}{dt}, \quad \frac{dQ_S}{dt} = -C_{sg} \frac{dV_G}{dt},$
 $\frac{dQ_D}{dt} = -C_{dg} \frac{dV_G}{dt}, \quad \frac{dQ_B}{dt} = -C_{bg} \frac{dV_G}{dt}$

The sum of charging currents
$$\frac{dQ_G}{dt} + \frac{dQ_S}{dt} + \frac{dQ_D}{dt} + \frac{dQ_B}{dt} = (C_{gg} - C_{sg} - C_{dg} - C_{bg})\frac{dV_G}{dt}$$
Charge conservation
$$\frac{d(Q_G + Q_S + Q_D + Q_B)}{dt} = 0 \quad \Longrightarrow \quad C_{gg} = C_{sg} + C_{dg} + C_{bg}$$

Only nine out of the sixteen capacitive coefficients are linearly independent

$$C_{gg} = C_{gs} + C_{gd} + C_{gb} = C_{sg} + C_{dg} + C_{bg}$$

$$C_{ss} = C_{sg} + C_{sd} + C_{sb} = C_{gs} + C_{ds} + C_{bs}$$

$$C_{dd} = C_{dg} + C_{ds} + C_{db} = C_{gd} + C_{sd} + C_{bd}$$

$$C_{bb} = C_{bg} + C_{bs} + C_{bd} = C_{gb} + C_{sb} + C_{db}$$

Lima - September 2024

The intrinsic transition frequency: The frequency at which $|i_d/i_g|=1$ in the common-source amplifier

Lima - September 2024

The intrinsic transition frequency

MOSFET in saturation: intrinsic C_{gd}=0

$$f_T = \frac{g_{mg}}{2\pi (C_{gs} + C_{gb})} = \frac{g_{ms}}{2\pi n (C_{gs} + C_{gb})}$$

$$g_{ms} = \mu C_{ox} n \varphi_t \frac{W}{L} \left(\sqrt{1 + i_f} - 1 \right)$$

$$C_{gs} + C_{gb} \cong \frac{C_{ox}}{2}$$
 Rough approximation

$$f_T \cong \frac{\mu \varphi_t}{2\pi L^2} 2\left(\sqrt{1+i_f} - 1\right)$$

Lima - September 2024

Capacitances of extrinsic transistor

Y. Tsividis, Operation and Modeling of the MOS Transistor, Second edition, Oxford University Press, 1999.

13. Extraction of parameters

V_{T0} , I_S and *n* extraction: The g_m/I_D method

$$\frac{g_m}{I_D} = \frac{2}{n\phi_t(\sqrt{1+i_f} + \sqrt{1+i_r})}$$

$$\frac{g_m}{I_D}\Big|_{V_{DS}\to 0} = \frac{1}{n\phi_t\sqrt{1+i_f}} \qquad \left(\frac{g_m}{I_D}\right)_{max}$$

At threshold $(i_f = 3) g_m / I_D$ is at $\frac{1}{2}$ of its maximum value

Lima - September 2024

11. Extraction of parameters V_{T0} , I_S and *n* extraction: The g_m/I_D method

Lima - September 2024

13. Extraction of parameters

Pinch-off voltage and slope factor vs. gate voltage

13. Extraction of parameters Common-Source Extraction of σ in WI (MI) & saturation Intrinsic Gain Method $A_{V,CS} = \frac{v_d}{v_g} = -\frac{g_m}{g_{md}} = -\frac{\frac{g_m}{I_{D,sat}}}{\frac{g_{md}}{I_{D,sat}}} = -\frac{\frac{1}{\phi_t} (\frac{1}{n}) \frac{2}{\sqrt{1+i_d}+1}}{\frac{1}{\phi_t} (\frac{\sigma}{n}) \frac{2}{\sqrt{1+i_d}+1}} = -\frac{1}{\sigma}$ V_{DD} I_{BIAS} V_D l n $n_d = 0.0$ -25 $l_d =$ V_{D,BIAS} V_G -30 $A_{V,CS}$ -35-40-45**BSIM** model $g_m v_g$ v_d v_{g} $g_{md}v_d$ $-50 \\ 0.2$ 0.5 0.6 0.30.70.8 0.40.9 $V_{D,BIAS}$ (V) btember 2024 103

13. Extraction of parameters

Extraction of ξ (velocity saturation parameter)

Lima - September 2024

REFERENCES

- A. I. A. Cunha, M. C. Schneider and C. Galup-Montoro, "<u>An MOS Transistor Model</u> <u>for Analog Circuit Design</u>", IEEE J. Solid-State Circuits, vol. 33, no. 10, pp. 1510-1519, October 1998.
- C. Galup-Montoro and M. C. Schneider, *MOSFET Modeling for Circuit Analysis and Design*, World Scientific, 2007.
- M. C. Schneider and C. Galup-Montoro, *CMOS Analog Design Using All-Region MOSFET Modeling*, Cambridge, 2010.
- D. G. Alves Neto, C. M. Adornes, G. Maranhão, M. K. Bouchoucha, M. J. Barragan, A. Cathelin, M. C. Schneider, S. Bourdel, C. Galup-Montoro, A 5-DC-Parameter MOSFET Model for Circuit Simulation in QucsStudio and Spectre, Newcas 2023 (Best Paper Award).
- C. M. Adornes, D. G. Alves Neto, M. C. Schneider and C. Galup-Montoro, "<u>Bridging</u> the Gap between Design and Simulation of Low-Voltage CMOS Circuits," Journal of Low Power Electronics and Applications, vol. 12, issue 2, June 2022.

THANK YOU VERY MUCH FOR YOUR ATTENTION

Lima - September 2024