A Fully Integrated 0.5-7Hz CMOS Bandpass Amplifier.

Alfredo Arnaud Maceira
Carlos Galup Montoro

(1) GME –IIE, Facultad de Ingeniería, Universidad de la República, Montevideo – Uruguay.
(2) LCI, Dep. de Engenharia Eletrica, Universidade Federal de Santa Catarina - Brazil.
Case of study: Signal conditioning circuit for a piezoelectric accelerometer which is part of a rate adaptive pacemaker.

Objective:
1st - To realize the continuous time circuit without using external elements.
2^o - To reduce as much as possible power consumption, area, and noise.

First stage of the signal chain: 2nd order bandpass amplifier.
Contents: A Fully Integrated 0.5-7Hz CMOS Bandpass Amplifier.

- Circuit specifications, analysis and difficulties.
 - Series-Parallel OTAs with very low transconductance and extended linear range.
 - Bandpass-amplifier architecture and measurements.
- Conclusions.
Circuit Specifications
Specifications: Sensor

<table>
<thead>
<tr>
<th>Specs</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charge Sensitivity [pC/g]</td>
<td>1.4</td>
<td>1.9</td>
<td>2.4</td>
</tr>
<tr>
<td>Capacitance</td>
<td></td>
<td>550 pF</td>
<td></td>
</tr>
<tr>
<td>Transverse Response</td>
<td></td>
<td>5%</td>
<td></td>
</tr>
<tr>
<td>Resistance (25°C)</td>
<td>10GΩ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resistance (150°C)</td>
<td>100MΩ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mechanic Resonance</td>
<td></td>
<td>9kHz</td>
<td></td>
</tr>
</tbody>
</table>

![Diagram of sensor with 3.5 mV/g]
V_{IN}

580MΩ at 0.5Hz!

Some kind of virtual ground or DC bias is required!
Specifications: System

<table>
<thead>
<tr>
<th>Specification</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage</td>
<td>2.8 - 2.0 V</td>
</tr>
<tr>
<td>Accelerations range</td>
<td>0.007 - 0.34 g<sub>peak</sub></td>
</tr>
<tr>
<td>Input Voltage Range</td>
<td>(24 μV<sub>peak</sub> - 1.2 mV<sub>peak</sub>) ± 3.5mV gravity step</td>
</tr>
<tr>
<td>Current Consumption</td>
<td>< 2μA</td>
</tr>
<tr>
<td>Frequency Response.</td>
<td>Bandpass 0.5-7Hz, 40 dB/dec</td>
</tr>
<tr>
<td>Input Noise.</td>
<td>< 12μV<sub>rms</sub></td>
</tr>
<tr>
<td>Input Offset.</td>
<td>< 13μV</td>
</tr>
<tr>
<td>Gain.</td>
<td>400</td>
</tr>
<tr>
<td>Others</td>
<td>No external elements (i.e. R, C)</td>
</tr>
<tr>
<td></td>
<td>Relaxed tolerance in transfer function</td>
</tr>
</tbody>
</table>
Main challenges:

• Transducer with a very high output impedance.
• Small signal in reverse in much higher gravity steps.
• Low noise, micropower.

• Sub-Hz filter without the aid of external resistors or capacitors.
Selected Circuit Technique: G_m-C continuous-time.

Extremely low transconductors or large capacitors are required for low frequency filters.
Series-Parallel division OTAs:
OTAs: Basic Series-Parallel OTA.

- Very simple circuit ⇒ less area, power consumption.
- Do not introduce much excess noise or offset.
- Easy to reuse layout.

- Fabricated and tested OTAs up to 35nS (30GΩ) and 1V linear range.
OTAs: Example $G_{m6} = 100 \text{pS} \ (10 \text{G}\Omega)$

- Measured
- $G_{m6} \cdot V_{IN}$

Par linealizado:

Output Current I_{Out} [nA]

Input Voltage V_{IN} [Volts]
OTAs: Example $G_{m5} = 2.58\,nS$ \((380\,M\Omega)\)
OTAs: Measured/estimated characteristics

<table>
<thead>
<tr>
<th>OTA</th>
<th>Transc. [^{[a]}]</th>
<th>Linearity V_{Lin} [mV]</th>
<th>Input noise. μV_{rms} [^{[a]}]</th>
<th>Input Offset σ_{Voff} [mV]</th>
<th>Current Cons. [nA]</th>
<th>Area [mm2]</th>
</tr>
</thead>
<tbody>
<tr>
<td>G_{m1}</td>
<td>110(110)nS</td>
<td>60</td>
<td>5 (4)</td>
<td>1.1</td>
<td>14</td>
<td>.019</td>
</tr>
<tr>
<td>G_{m2}</td>
<td>2.35(2.58)nS</td>
<td>150</td>
<td>42</td>
<td>4.4</td>
<td>43</td>
<td>.040</td>
</tr>
<tr>
<td>G_{m3}</td>
<td>35(33)pS</td>
<td>150</td>
<td>163(130)</td>
<td>2.1</td>
<td>42</td>
<td>.092</td>
</tr>
<tr>
<td>G_{m4}</td>
<td>21nS</td>
<td>150</td>
<td></td>
<td></td>
<td>47</td>
<td>.051</td>
</tr>
<tr>
<td>G_{m5}</td>
<td>2.4(2.8)nS</td>
<td>500</td>
<td></td>
<td>9.1</td>
<td>44</td>
<td>.18</td>
</tr>
<tr>
<td>G_{m6}</td>
<td>89(100)pS</td>
<td>500</td>
<td></td>
<td>6.8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[^{[a]}\] Linear characteristics as measured or estimated.
0.5-7Hz Filter-Amplifier
Bandpass-Amplifier 0.5-7Hz

Preamplifier maximum possible gain $G=46.4$

- $V_{Bias} = 700\text{mV}$
- $C_2=50\text{pF}$
- 550pF sensor capacitance used in the filter
- $V_{lin}=\pm 5\text{mV}$
- $C_3=50\text{pF}$
- $C_4=250\text{pF}$

Gain Stage $G_2=8.3$

$V_{lin}=\pm 500\text{mV}$

Output V_{Out2}

$G=385$
Bandpass-Amplifier 0.5-7Hz

Gain 2nd stage:
G2 = 8.3

Preamplifier Gain: G1 = 46.4
Bandpass-Amplifier 0.5-7Hz: Critical aspects.

- **G_{m1}:** noise is critical
- **G_{m3}** minimum possible transconductance.
- **$C_2 = 50\text{p}$**
- **$C_3 = 250\text{p}$**
- **$C_4 = 50\text{p}$**
- **V_{IN}**
- **V_{OUT1}**
- **V_{OUT2}**

- **$G_{m5,6}$** minimum offset.
- **$G_{m5,6}$** $\pm 500\text{mV}$ linear range.
- **C_3** as big as possible.
Bandpass Measurements: Gain - Frequency.

$G_{\text{máx}} = 390$

Frequency [Hz]: 1.8 Hz
Measurements: Qualitative response w/sensor.

- External 42nA reference current
- Mechanical shaking at approx. 2Hz
Filter-Amplifier Measurements: Characteristics

<table>
<thead>
<tr>
<th>Specification</th>
<th>Measured Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pass-band frequency</td>
<td>40db/dec 0.5-7Hz</td>
</tr>
<tr>
<td>Gain</td>
<td>390</td>
</tr>
<tr>
<td>Input noise</td>
<td>2.1µV<sub>rms</sub></td>
</tr>
<tr>
<td>Supply voltage</td>
<td>2.0 - 2.8 V</td>
</tr>
<tr>
<td>Current Consumption</td>
<td>230nA</td>
</tr>
<tr>
<td>Area</td>
<td>0.78mm<sup>2</sup></td>
</tr>
<tr>
<td>Input Offset</td>
<td>18µV</td>
</tr>
</tbody>
</table>
Conclusions:

Series-parallel Division OTAs:

- Excellent trade-off solution regarding linearity, noise, occupied area, power consumption.
- OTA designed and tested up to the equivalent of 30Ω resistor and up to 1V linear range.

Filter Design:

- 0.5-7Hz, 40db/Dec, Gain 400, bandpass filter has been presented.
- Remarkable low power consumption, and input noise.

No external elements have been employed!