

Federal University of Santa Catarina Department of Electrical Engineering Integrated Circuits Laboratory

On the minimum supply voltage for CMOS analog circuits: rectifiers and oscillators

Carlos Galup-Montoro, Marcio C. Schneider and Marcio B. Machado

Rectifier outline

⇒Background: microwave power detection
⇒Power/peak detector
⇒Half-wave rectifier
⇒MOSFETs as diodes
⇒Weak inversion MOSFET model

Background: microwave power detection

Basic detector circuit

Wetenkamp, IEEE MTT-S Int. Microwave Symp. Dig., 1983

Power/Peak Detector 2 A simple case: square-wave input

$$\frac{V_o}{n\phi_t} = \ln\left[\cosh\left(V_P / n\phi_t\right)\right]$$

Power Detector

$$V_P \ll n\phi_t \longrightarrow \frac{V_o}{n\phi_t} \cong \frac{1}{2} \left(\frac{V_P}{n\phi_t}\right)^2$$

Results for sine input are similar. Difference is a "form factor"

Half-wave rectifier circuit 1

Steady-state analysis (similar to peak detector)

Basic principle: charge conservation

$$\frac{I_0}{T} \left[\int_{-T/2}^0 \left(e^{\left(\frac{-V_P - V_o}{n\phi_t}\right)} - 1 \right) dt + \int_{0}^{T/2} \left(e^{\left(\frac{V_P - V_o}{n\phi_t}\right)} - 1 \right) dt \right] = I_L$$

Assumption: very low ripple $\rightarrow V_o \cong$ constant

$$\frac{V_o}{n\phi_t} = \ln\left[\frac{\cosh\left(V_P/n\phi_t\right)}{1+I_L/I_0}\right]$$

Half-wave rectifier circuit 2

MOSFETs as diodes

Channel and extrisinc diode are in parallel

Weak inversion MOSFET model

W, *L* width, length of the channel

 μ mobility, C'_{ox} gate capacitance per unit area, n slope factor (n = 1.2-1.6)

 V_P pinchoff voltage , V_{T0} threshold voltage

 q'_{IS} and q'_{ID} are the normalized carrier densities (to the thermal charge $-nC'_{ox}\phi_t$) at source and drain.

 I_{S} and I_{SQ} are the normalization (specific) and "sheet" normalization currents.

DTMOS diode in WI

• for the DTMOS connection $V_{GB} = V_{DB} = 0$, v = -V_{SB}

$$I_{DS} = I_{F} - I_{R} = 2I_{S}e^{-\frac{V_{T0}}{n\phi_{t}}} \left(e^{\frac{v}{\phi_{t}}} - 1\right)$$

the DTMOS diode behaves as a diode with ideality factor n = 1 for low voltage (weak inversion) operation.

$$I_{DS} = I_D = I_0 \left(e^{\frac{v}{\phi_t}} - 1 \right)$$

Current I_0 of the DTMOS diode can be determined as the saturated drain current of the (conventionally connected) transistor with $V_{GB} = V_{SB} = 0$.

$$I_{DSsat} = I_F = 2I_S e^{-\frac{V_{T0}}{n\phi_t}} = I_0$$

Standard, low-VT and zero-VT MOSFETs in a 130 nm technology

1

Rectifier summary

- Analytical model of the rectifier circuit in which the nonlinear device follows the diode Shockley (exponential) equation.
- The model is correct for input voltages down to below the thermal voltage.
- The main design parameter is the diode saturation current I_0 .
- For a DTMOS (WI) diode

$$_{0} \propto rac{W}{L} e^{rac{-V_{TO}}{n\phi_{t}}}$$

we can take advantage of aspect ratio and of different V_T 's

Oscillator outline

 ⇒Background: minimum supply voltage for FET circuits
⇒MOSFET charge based model
⇒Low voltage operation of the (C)MOS inverter
⇒Ring oscillator
⇒Colpitts oscillator

Background 1: minimum supply voltage for the CMOS inverter

CMOS inverter transfer characteristics (Swanson and Meindl, IEEE JSSC 1972)

Prof. James Meindl: Theoretically, the minimum supply voltage for a CMOS inverter is 2 (In2) (kT/q) = 36 mVat room temperature (IEEE JSSC, 2000)

Background 2: oscillators with super

low supply voltage

Dick Kleijer, available at http://www.dickswebsite.eu/fetosc/enindex.htm

FET type	Supply voltage	Supply current
2x J 310	19 mV	1.04 mA
3x J 310	17 mV	1.40 mA

Oscillator with very high impedance winding (4 MΩ) transformer running on 5.5 mV supply voltage Horizontal: 1 ms /div. Vertical: 200 mV /div.

MOSFET charge-based model 1

W, *L* width, length of the channel

 μ mobility, C'_{ox} gate capacitance per unit area, n slope factor (n = 1.2-1.6) q'_{IS} and q'_{ID} are the normalized carrier densities (to the thermal charge $-nC'_{ox}\phi_t$) at source and drain.

 I_{S} and I_{SQ} are the normalization (specific) and "sheet" normalization currents.

MOSFET charge-based model 2 : LF small signal model in the triode region

 $g_{ms} = g_{mg} + g_{mb} + g_{md}$

17

MOSFET charge-based model 3:the unified charge control model (UCCM)

 V_P is the pinch-off voltage

Low-voltage operation of the MOS inverter (WI / triode region)

Low–voltage operation of the (C)MOS inverter (WI / triode region)

Ring oscillator 2

Minimum gain for oscillation

$$\frac{g_{mg}}{g_{md} + G_p} = \frac{g_{ms} - g_{md}}{n(g_{md} + G_p)} > 1$$

$$\frac{g_{ms}}{g_{md}} \ge 1 + n \left(1 + \frac{G_p}{g_{md}} \right)$$

From the UCCM

Considering high *Q* inductor ($G_P << g_{md}$) and WI operation and n = 1

$$V_{DD\min} = (\ln 2)\phi_t$$

Colpitts oscillator 1

For high Q inductor ($G_{inductor} < g_{md}$) and WI operation

$$V_{DD\min} \cong \phi_t \ln\left(1 + n\frac{C_2}{C_1}\right)$$

Colpitts oscillator 2

Transistor characteristics measured for $V_{DD} = 20 \ mV$ at $T = 23 \ ^oC$.

Parameter	Value
I_S (Specific Current)	11.18 μA
V_{TH} (Threshold Voltage)	59 mV
g_{ms} (Source Transconductance)	520 µA/V
g_{md} (Drain Transconductance)	325 µA/V
n (Slope factor)	1.6

Photograph of the oscillator working from a thermoelectric generator at T=24 °C.

Oscillator summary

There is no hard low voltage limit for analog MOS circuits (oscillators can operate with supply voltage under kT/q)

The ideal active device for low voltage operation is a MOSFET with threshold voltage near zero (for WI operation at low supply voltage)

The charge based MOSFET model is very convenient for the design of ultra-low-voltage circuits (operation in triode region/ WI)

References

- M. C. Schneider and C. Galup-Montoro, CMOS Analog Design Using All-Region MOSFET Modeling, Cambridge University Press, 2010.
- A. J. Cardoso, L. G. de Carli, C. Galup-Montoro, and M. C. Schneider, "Analysis of the rectifier circuit valid down to its lowvoltage limit, " *IEEE Transactions on Circuits and Systems I*, 2011.
- F. R. de Sousa, M. B. Machado, C. Galup-Montoro, "A 20 mV Colpitts Oscillator powered by a thermoelectric generator, submitted to ISCAS 2012.