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CHAPTER   3 

 

PROGRAMMABLE SECOND GENERATION SWITCHED-

CURRENT INTEGRATOR AND BIQUAD FOR LOW-

VOLTAGE APPLICATIONS  

 

3.1 INTRODUCTION 

In this chapter we propose a second generation SI integrator. The proposed integrator 

has been prototyped and programmed by using MOSFET-Only Current Dividers 

(MOCD) [33]. The consequence of the op-amp offset on the integrator performance has 

been studied. A programmable integrator-based biquad, which allows independent 

tuning of the center frequency and the quality factor has been implemented.  

 

3.2 SECOND GENERATION INTEGRATOR 

3.2.1 BASIC CELL 

In this section, we propose a second generation SI integrator based on the SI mirror 

proposed in [21]. The proposed integrator is made up of two switched-current memory 

cells. Fig. 3.1 shows the proposed integrator at different clock phases. Two outputs are 

available, iOA and iOB. As in the conventional second generation SI integrator (Fig. 2.4. 

(b)), the input current together with the feedback current are fed to the first S/H (M1) at 

the first half cycle. At the next half clock cycle, the stored signal is held on the second 

S/H (M2).  
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(a) At    t=n.                                      (b) At   t = n-1/2. 

Fig. 3.1. The low-voltage SI integrator on different phases. 

 

The analysis of the integrator at the two clock phases is as follows: 

iOA (n) = -α iA(n) = -α{iin (n) + iB(n)}        (3.1.a) 

and 
iB(n) =iB(n-1/2)                (3.1.b) 

On the previous half cycle, the currents are 

iB(n-1/2) =  iA(n-1/2)     (3.1.c) 
and  

iA(n-1/2) = iA(n-1)     (3.1.d) 

From (3.1), we can write 

iOA (n) = -α iin (n) + iOA(n-1)     (3.2.a) 
and  

iOB (n) =  γ iin (n-1) + iOB(n-1)     (3.2.b) 

where α =(W/L)MA/(W/L)M and γ =(W/L)MB/(W/L)M. W and L are the channel width 

and length, respectively.  

The z-transform of (3.2.a) and (3.2.b) gives: 



 

26 

1z1

1
I

I
o

in

o
OA

−−
α−=φ

φ

    (3.3.a) 

1z1

1z
I

I
o

in

o
OB

−−

−
γ=φ

φ

     (3.3.b) 

An SI integrator which allows for the possibility of several input currents together 

with its timing diagram are illustrated in Fig 3.2. This timing diagram is necessary to 

avoid the loss of information during clock transition in a practical implementation. 
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Fig. 3.2. The low-voltage second generation SI integrator. 

(a) Circuit schematic. 

(b) Clock phases. 

 

Assuming that all MOS transistors have the same aspect ratios (W/L), the 

output/input relations are summarized in Table. 3.1. The continuous input (iin3) is a 

sampled/held signal. If iin3 is sampled on the odd phase and held on the even phase, it is 

denoted as (odd+even). Conversely, if it is sampled on the even phase and held on the 

odd phase it is denoted as (even+odd). Table 3.1 illustrates that the proposed integrator 

allows performing forward, backward, and lossless discrete integrators which together, 

with inversion, give some flexibility for the biquad design. 
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Table 3-1. Transfer functions of the SI integrator in Fig. 3.2 (a). 
Continuous signal 

 (Iin3) 

 

 
 
o
1inIφ  

 
e
2inIφ  

odd+even1 Even+odd2 

o
OAIφ  -1 / (1-z-1)  z-1/2 / (1-z-1) -1 0 

e
OAIφ  -z-1/2 / (1-z-1) z-1 / (1-z-1) -z-1/2  0 

o
OBIφ  z-1 / (1-z-1) -z-1/2 / (1-z-1) 0 -z-1/2  

e
OBIφ  z-1/2 / (1-z-1) -1  / (1-z-1) 0 -1 

1. An odd+even signal is sampled at φo and held constant at φe.  
2. An even+odd signal is sampled at φe and held constant at φo. 

 
A lossy SI integrator can be realized using the dotted feedback path shown in Fig. 

3.2. (a). The z-domain transfer functions are: 
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where β=(W/L)MC / (W/L)MB1 and iin=iin1. 

The MOS transistor responsible for the loss must be clocked in the even phase; 

otherwise, the feedback factor would be (1+β)IOBz-1 which means that the integrator 

would become unstable.  

The integrator with this topology has an axis that divides it into two identical 

sections, thus reducing the effects of charge injection [25]. Ideally, the charges injected 

by the two switches and clock feedthrough are equal. However, current errors due to 

charge injection are not canceled out due to circuit mismatch and nonlinearities. The 

proposed second generation SI integrator has the same sensitivities to transistor 
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mismatch [32] as the conventional second generation SI integrator in [20]. In the 

integrator proposed here, the switches operate at constant voltage [36, 37], which means 

that the charge injected into the holding capacitors (Ch1 and Ch2) is signal-independent. 

Thus, the proposed integrator is capable of achieving higher accuracy than the 

conventional SI integrator. Moreover, if the voltage Vx obtained from the network in 

Fig. 2.5.(c) is applied into the non-inverting input of the op-amps, the conduction gap 

[8, 10] existing in conventional SI circuits is avoided. Therefore, the SI topologies 

proposed here are more suitable for low voltage applications than the conventional 

ones.  

• SIMULATION 

The SI integrator shown in Fig. 3.2.(a) has been simulated using the SMASH [38] 

simulator together with ACM MOSFET model [22]. The circuit was simulated for 8µA 

(20kHz) input signal, 1MHz sampling rate and Ch1= Ch2=0.5pF. The aspect ratios are 

5.6µm/5.6µm for the MOS transistor and 3µm/0.7µm for the nMOS switches. The 

detailed design of the two-stage op-amp is presented in Appendix B. The simulation 

result is shown in Fig. 3.3. The offset between iAO and iOB is due to the offset voltage 

mismatch between the opamps. A linear voltage-to-current converter has been 

implemented using a linear resistor. 

 

3.2.2 THE EFFECT OF THE OP-AMP OFFSET VOLTAGE 

Fig. 3.4 illustrates the proposed SI integrator considering op-amp offsets. The 

operating voltages of the switches are VB+VOFF1 or VB+VOFF2. This difference generates 

a current error proportional to the difference between the offsets. This problem is 
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exactly the same as in the conventional SI integrator if mismatch between the current 

sources (see Fig. 2.4) is taken into account.  
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Fig. 3.3. Sinusoidal steady state response of the low-voltage integrator. 

 

In this section, we analyze the effects of the op-amp offsets on the output voltage. 

The offset voltages have been considered as time-invariant signals and the input current 

is zero. The analysis of the SI second generation integrator leads to: 
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Fig. 3.4. Scheme of the low-voltage SI integrator including op-amp offset voltages. 

 

The error in the output current IA at odd phase is denoted by ∆ IA
o 

 



 −−−=∆ − )VV(Z)oVoV(A)Z(oI e

2OFF
e
OA

2/1
1OFFOAA    (3.6) 

Assuming zero initial condition and zero input (no current at Min due to offset 

voltages), the output current (IA) due to the offset voltages is  

)VV(B)z1(I o
2OFF

o
1OFF

1o
A −=− −     (3.7) 

Therefore, if the two op-amps have equal offset voltages, the current error will tend 

to zero. However, for the general case VOFF1 ≠VOFF2, and the difference in the offset 

voltages will affect the dynamic range of the circuits. Thus, the op-amp offset presents a 

major problem for the proposed integrator. So it is important to overcome this drawback 

by using dynamic [39] or offset compensation techniques as in SC circuit [40].  
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• OFFSET COMPENSATION [40] 

Fig. 3.5.(a) illustrates an SI sample-hold circuit with offset compensation. The circuit 

works as follows. When φc is high, the offset voltage is stored into Cc. Consequently, 

when φc is low the offset appears as an input signal and its effects are ideally canceled 

out. 

The switches in Fig. 3.5.(a) still work at constant DC voltage. Thus, this circuit 

avoids the conduction gap. The offset-insensitive second generation SI integrator is 

shown in Fig. 3.5.(b). 
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Fig. 3.5. Offset compensation for the SI technique [40]. 

(a) Sample hold circuit. 

(b) Second generation integrator and clock diagram. 
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• EXPERIMENTAL RESULTS 1 

The SI lossy integrator shown in Fig. 3.2.(a) was implemented using operational 

ampli fiers TL 082, MOS integrated transistors (W=48µm, L=1.2 µm ), MOS switches 

CD 4007 and holding capacitors of 1.8nF. The loss factor (β) was set by a 6-bit 

MOSFET-Only Current Divider (MOCD). The 6-bit MOCD was integrated on a Sea-of-

Transistors (SoT) array, in a 1.2µm technology from ES2 [41]. The MOCD is switched 

by “ANDing” the digital word and the even phase waveforms { φe.b(bN-1 ......bo)}. The 

integrator has been simulated using the ASIZ program [42]. The simulated and 

experimental frequency responses presented in Fig. 3.6 show excellent agreement. 
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Fig. 3.6. Frequency response of the low-voltage second generation SI integrator in Fig.3.2 

.....  -Theoretical  and __-Experimental. 

 

                                                           
1 The experimental work has been done by M. Sc. Renato Faustino.   



 

33 

3.3 SECOND ORDER SECTION  

The second generation SI integrator has been applied to a programmable second 

order biquad. In this biquad section, the normalized center frequency (ωO T) and the 

quality factor (Q) can be controlled independently. The design algorithm, the prewarped 

error and the switched current realization of the biquad section are described next. 

 
3.3.1 GENERAL BLOCK DIAGRAM  

The block diagram of a second order filter is shown in Fig. 3.7. The general transfer 

function is  
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where S=sT is the normalized frequency. 
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Fig. 3.7. Block diagram of a biquad. 

 

In (3.8), the normalized center frequency and quality factor of the biquad are 

described as  

ωο T = 
2

a
1

a                                (3.9.a) 
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Q  =  
1

2

a
a

f
1         (3.9.b) 

where  ωo is center frequency and  Q is the quality factor. 

This biquad allows one to obtain low-pass (K2 and K3 = 0), bandpass ( K1 and K3 = 

0), high-pass ( K1 and K2 =0), band-reject (K2=0), and all-pass filters. 

 

3.3.2 MAPPING ERROR ANALYSIS 

A common approach to design sampled-data filter is to obtain H (z) from the s-

domain transfer function H (S). The mapping from the S- to the Z-domain is achieved 

via a transformation of the frequency variable. In this work, we will obtain the biquad 

circuit parameters directly from the analog specifications, namely, the center frequency 

(ωΟ), the quality factor (Q) and the gain (Ko) at the center frequency. The errors in 

center frequency, quality factor and gain owing to frequency mapping must be taken into 

account. The error in both ωΟ and Q due to prewarping have been studied elsewhere 

[43]. In this section, the magnitude error {|H (i ωΟ)|} at the center frequency has been 

analyzed as follows. 

The power series of the z-domain variable up to the second order term is 

z-1 = e-i ωΤ≈ 1 +(−i ωΤ) +(−i ωΤ)2/2! +(−i ωΤ)3 /3!  (3.10) 

The application of backward Euler transformation (ST=1-z-1) to the bandpass filter 

(K1 and K3 =0 in equation 3.8) leads to  
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From (3.10) and (3.11), the magnitude of the transfer function at the center frequency 

{|H (iωΟ T)|} is  

1TQ

K
)Ti(H

O

2
O +ω

≈ω      (3.12) 

which is equal to K2  if    Qωo T << 1 

Fig.3.8 shows the magnitude error at the center frequency as function of the 

normalized frequency (Fo/FCK) for different quality factors. Fo is equal to 2π/ωo and FCK 

is equal to 1/T. The error can be very large specially for high-Q filters and large Fo/FCK 

ratios. The error of the backward LDI transformation [43] leads to a considerably 

smaller magnitude error at Fo, as shown in Fig. 3.9.  
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Fig. 3.8. Magnitude error at the center frequency for backward Euler transformation. 
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Fig. 3.9. Magnitude error at the center frequency for the backward LDI transformation. 

 

3.3.3 IMPLEMENTATION OF THE SWITCHED-CURRENT BIQUAD  

As an application of the proposed SI integrator, we have designed a biquadratic 

section by using backward LDI transformation [43]. The biquad presented in Fig. 3.7 

has been realized as shown in Fig. 3.10. The output current as function of the inputs is 
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Using z ≅ 1+sT+ (sT)2/2! in (3.13), the normalized center frequency (ωoT) and the 

quality factor (Q) can be approximated as  
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When a=a1=a2, a << 1 and af<<1, both ωoT and Q are controlled independently if 

the sampling frequency is much higher than the center frequency. In this case: 

ωο T ≅ a   and         Q  ≅1/ f  

The programmabilit y of the biquad is achieved using the MOCD device [33]. In Fig. 

3.10, the term “φ.x” means that the digital word “x“ is ANDing with clock “φ” to 

implement the switching of the MOCD. 
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Fig. 3.10. Biquadratic section using second-generation SI integrators. 
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• EXPERIMENTAL RESULTS1   

A discrete prototype of the filter has been implemented and tested. In this 

experimental work, transistors were replaced by resistors. The programmability of the 

filter was obtained by scaling the resistances. The unit resistor is 20kΩ, and the holding 

capacitors are C=100pF. The bandpass filter has been programmed for center 

frequencies fo=150, 300 and 600Hz. The sampling frequency was 15kHz and the quality 

factor was equal to 8. The simulation and experimental results are shown in Fig. 3.11. In 

the case of very low ωoT, the error in the center frequency is large due to the variability 

of the resistors. To reduce this error we have to decrease the variability of the resistance 

or, for an IC implementation, increase the resolution of the MOCD.  
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Fig. 3.11. Theoretical (....) and experimental ( ___ ) magnitude response of the bandpass 

filter. fo=150, 300 and 600 Hz (Q=8 and FCK=15kHz). 

 

                                                           
1 The experimental work has been done by the M. Sc. Renato Faustino. 
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3.3.4 EFFECT OF THE OFFSET VOLTAGE OF THE OP-AMPS ON THE 

BIQUAD OUTPUT  

As we have seen, the proposed SI integrator suffers from mismatch between the op-

amp offset voltages. The output voltages due to op-amp offsets are: 
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where Vij is offset voltage of op-amp Aij in Fig. (3.10), with i=1,2 and j=1,2. 

To simplify expressions (3.15), we assume the offset to be a DC signal (z=1). Thus 

(3.15.a) and (3.15.b) become   
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where K1/a2 = GDC (DC gain), f/a2 = 1/(Q ωoT), K2/a1 = Q G (ωoT) and K3/a1 = 

GHF/ωoT. 

Finally, the DC output caused by the op-amp offsets, Eqn. (3.16.a), is written as  

T
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where ∆V is the offset mismatch {Voff1 (A11)-Voff2 (A12)}. 

The DC component of the output, as given by (3.17), is not large provided that the 

sampling frequency is not very much higher than the center frequency of the biquad or 

the offset mismatch is not high. The dynamic technique presented in section (3.2.2) can 

be employed to reduce the effects of the offset mismatch. 

 


