

Advanced Compact MOSFET Model: Design-oriented ACM2 model

20/06/2024

"Scan me"

Deni Germano Alves Neto

denialves77@gmail.com

https://github.com/ACMmodel/MOSFET_model

About me

• Universidade Federal de Santa Catarina – UFSC - Brazil

 V_{DD} < 100 mV

- Undergrad and Masters in IC design 2022
	- Subject : Ultra-Low-Voltage IC circuits
		- Dissertation: Ultra-Low-Voltage Standard Cell Library
			- ACM for low voltage circuits
- First contact with open-source IC design :
	- Chipathon SSCS 2021 :
	- Analog-front-end for Biosignals AFEbio
- Start PhD in 2023 : MOSFET Modeling
- Joint PhD between UFSC and Université Grenoble Alpes (Currently based)
	- Chipathon-SSCS & UNIC-CASS 2023 Analog IC design
	- Live demonstration of the ACM2 at ISCAS 2024 with the open-source tools (XSCHEM)

Outline

- **Introduction: Compact models**
- **ACM2** model vs V_{GS} model
- **ACM2 model vs PSP**
- **Parameter extraction and circuit example**

What is a compact model ?

- Compact Model is the medium of information exchange between foundry and designer.
- Provides **detailed information** about device operation & characteristics
- However, needs to be:
	- **Simple** enough to be incorporated in circuit simulators
	- **Accurate** enough to predict behavior of circuits

Why the need for a design-oriented MOSFET model ?

- Provides a proper bridge between the electrical behavior of the MOSFET and circuit performance though simple analytical equations
- Allows analytical sizing of the transistors
- Avoids excessive dependency of the IC designer in using parametric simulations with complex models to define the operation point!

Why the need for a design-oriented MOSFET model ?

- Provides a proper bridge between the electrical behavior of the MOSFET and circuit performance though simple analytical equations
- Allows analytical sizing of the transistors
- Avoids excessive dependency of the IC designer in using parametric simulations
- **Increase the designer intuition!**

IC designers bridge

ACM2: A simple 5-DC-parameter MOSFET model

Complete Continuous All-region charge-based MOSFET model

$$
V_{P} = \frac{V_{GB} - V_{TO} + \sigma(V_{DB} + V_{SB})}{n}
$$

\n
$$
\frac{V_{P} - V_{SB}}{\phi_{t}} = q_{s} - 1 + \ln(q_{s})
$$

\n
$$
q_{dsat} = q_{s} + 1 + \frac{1}{\zeta} - \sqrt{\left(1 + \frac{1}{\zeta}\right)^{2} + \frac{2q_{s}}{\zeta}}
$$

\n
$$
\frac{V_{DS}}{\phi_{t}} = q_{s} - q_{d} + \ln\left(\frac{q_{s} - q_{dsat}}{q_{d} - q_{dsat}}\right)
$$

\n
$$
I_{D} = I_{S} \frac{(q_{s} + q_{d} + 2)}{1 + \zeta(q_{s} - q_{d})} (q_{s} - q_{d})
$$

\nSpecific
\n
$$
I_{S}
$$

\n
$$
V_{T0}
$$

\nSpecific
\n
$$
V_{T0}
$$

\n
$$
V_{T1}
$$

\nSimplify U_{Sat}
\n
$$
V_{T2}
$$

\n
$$
V_{T30}
$$

\n
$$
V_{T4}
$$

\n
$$
V_{T1}
$$

\n
$$
V_{T2}
$$

\n
$$
V_{T30}
$$

\n
$$
V_{T4}
$$

\n
$$
V_{T5}
$$

\n
$$
V_{T4}
$$

\n
$$
V_{T5}
$$

\n
$$
V_{T4}
$$

\n
$$
V_{T5}
$$

\n
$$
V_{T6}
$$

\n
$$
V_{T5}
$$

\n
$$
V_{T6}
$$

\n
$$
V_{T8}
$$

\n
$$
V_{T9}
$$

\n
$$
V_{T0}
$$

\n
$$
V_{T0}
$$

\n
$$
V_{T1}
$$

\n
$$
V_{T2}
$$

\n
$$
V_{T30}
$$

\n
$$
V_{T4}
$$

\n
$$
V_{T5}
$$

\n
$$
V_{T
$$

Outline

- **Introduction: Compact models**
- **ACM2** model vs V_{GS} model
- **ACM2 model vs PSP**
- **Parameter extraction and circuit example**

Inversion charges in terms of the inversion levels

Unified **C**harge **C**ontrol **M**odel

$$
\frac{V_P - V_{S(D)B}}{\phi_t} = q_{s(d)} - 1 + \ln q_{s(d)}
$$

inversion charge and inversion level: $q_{s(d)} = \left(1 + i_{f(r)} - 1\right)$ Relationship between normalized

Unified (**I**)current **C**ontrol **M**odel

$$
\frac{V_P - V_{S(D)B}}{\phi_t} = \sqrt{1 + i_{f(r)}} - 2 + \ln\left(\sqrt{1 + i_{f(r)}} - 1\right)
$$

$$
\frac{I_D}{I_S} = \frac{I_F - I_R}{I_S} = i_f - i_r
$$

 $i_{\mathit{f(r)}}$ is the forward (reverse) inversion level

Oversimplified model vs ACM-3PM model @ Saturation

$$
I_D = \frac{\beta}{2} (V_{GS} - V_T)^2
$$

$$
\frac{g_m}{I_D} = \frac{1}{V_{GS} - V_T}
$$

$$
i_f = \frac{V_P}{I_S} \qquad V_P = \frac{V_O}{n}
$$

$$
\frac{V_P - V_{S(D)B}}{\phi_t} = \sqrt{1 + i_f} - 2 + \ln\left(\sqrt{1 + i_f} - 1\right)
$$

$$
\frac{g_m}{I_D} = \frac{2}{n\phi_t\left(\sqrt{1 + i_f}\right)}
$$

 $I_{\rm R}$

Misconception about overdrive voltage: NMOS example:

$$
V_{OV} = V_{GS} - V_T
$$

 $V_{\rm op} - V_{\rm mo}$

22

Outline

- **Introduction: Compact models**
- **ACM2** model vs V_{GS} model
- **ACM2 model vs PSP**
- **Parameter extraction and circuit example**

Physics-based saturation: design model

 $i_{dsat} =$ 2 carriers ζ q_{dsat} I_D $I_{\mathcal{S}}$ $= i_{dsat} =$ $q_s + q_{dsat} + 2$ $1 + \zeta (q_s - q_{dsat})$ $q_s - q_{dsat}$ $q_{dsat} = q_s + 1 +$ 1 ζ $-$ || 1 + 1 ζ 2 $+$ $2q_s$ ζ or, equivalently $\zeta=$ $\mu_{\scriptscriptstyle S}\boldsymbol{\phi}_t/L$ v_{sat} Normalized saturation current due to velocity saturation of Normalized current vs. normalized charge densities

$$
q_s = \sqrt{1 + \frac{2}{\zeta} q_{dsat} - 1 + q_{dsat}}
$$

Unified **C**harge **C**ontrol **M**odel *including the effect of velocity saturation*

$$
\frac{V_{DS}}{\phi_t} = q_s - q_d + \ln\left(\frac{q_s - q_{dsat}}{q_d - q_{dsat}}\right)
$$

Paris, June 2024 **12/30**

Output characteristics including DIBL and v_{sat}

DIBL model: $V_T = V_{T0} - \sigma(V_{SB} + V_{DB})$

Paris, June 2024

ACM2¹ vs PSP – 130 nm SiGe IHP² I_D vs V_{GB}

Characteristics of a LVT NMOS bulk transistor with W $/L = 10 \mu m/ 120$ nm.

¹ ACM2 : implemented in verilog-A, compiled by OPENVAF, simulated in Ngspice ² Institut for High-Performance Microelectronics (IHP) open-source PDK

ACM2¹ vs PSP – 130 nm SiGe IHP² I_D vs V_{DS}

Characteristics of a LVT NMOS bulk transistor with W $/L = 10 \mu m/ 120$ nm.

'ACM2 : implemented in verilog-A, compiled by OPENVAF, simulated in Ngspice ² Institut for High-Performance Microelectronics (IHP) open-source PDK

3PM-ACM model in a nutshell

$$
I_D = I_S[i_f - i_r]
$$
 where $I_S = \mu C_{ox}n \frac{\phi_t^2 W}{2 L} = I_{SH} \frac{W}{L}$
\n
$$
\frac{V_P - V_{S(D)B}}{\phi_t} = \sqrt{1 + i_{f(r)}} - 2 + \ln\left(\sqrt{1 + i_{f(r)}} - 1\right)
$$

\n
$$
V_P \cong \frac{V_{GB} - V_{T0}}{n}
$$

\n
$$
I = V_{DC} \text{ eqs}
$$

\n
$$
I = V_{DC} \text{ eqs}
$$

\n
$$
\frac{V_{DS}}{\phi_t} = \sqrt{1 + i_f} - \sqrt{1 + i_r} + \ln\left(\frac{\sqrt{1 + i_f} - 1}{\sqrt{1 + i_r} - 1}\right)
$$

\n
$$
g_{ms(a)} = \frac{2I_S}{\phi_t} \left(\sqrt{1 + i_{f(r)}} - 1\right)
$$

\n
$$
V_{BD} = \frac{g_{ms} - g_{md}}{h}
$$

\n
$$
V_{BD} = \frac{g_{ms} - g_{md}}{2I_{SH}(\sqrt{1 + i_{f(r)}} - 1)}
$$

\n
$$
V_{BD} = \frac{g_{ms} - g_{md}}{2I_{SH}(\sqrt{1 + i_{f(r)}} - 1)}
$$

\n
$$
V_{BD} = \frac{g_{ms} - g_{md}}{2I_{GI}} = \frac{2}{n\phi_t(\sqrt{1 + i_f} + \sqrt{1 + i_r})}
$$

\n
$$
V_{BD} = \frac{1}{n\phi_t} \frac{G}{2I_{GI}} = \frac{2}{n\phi_t(\sqrt{1 + i_f} + \sqrt{1 + i_r})}
$$

\n
$$
V_{BD} = \frac{1}{n\phi_t} \frac{G}{2I_{SI}} = \frac{2}{n\phi_t} \frac{G
$$

5PM-ACM2 :Transconductances in saturation

$$
I_D = \frac{2I_S}{\zeta} q_{dsat} \quad \text{where}
$$
\n
$$
g_m \triangleq \frac{\partial I_D}{\partial V_G} \qquad g_{md} \triangleq \frac{\partial I_D}{\partial V_D} \qquad \qquad g_{dsat} = q_s + 1 + \frac{1}{\zeta} - \sqrt{\left(1 + \frac{1}{\zeta}\right)^2 + \frac{2q_s}{\zeta}}
$$

Outline

- **Introduction: Compact models**
- **ACM2** model vs V_{GS} model
- **ACM2 model vs PSP**
- **Parameter extraction and Circuit example**

19/30

Extraction of *σ*

C ommon-Sourc e Intrinsic -Gain method

$$
sat = \frac{2}{\zeta} q_{dsat} \qquad q_s = \sqrt{1 + \frac{2}{\zeta} q_{dsat}} - 1 + q_{dsat}
$$

• q_s calculated using parameters (V_{T0}, n, σ) and UCCM.

$$
V_P = \frac{V_{GB} - V_{T0} + \sigma(V_{DB} + V_{SB})}{n}
$$

$$
\frac{V_P - V_{S(D)B}}{\phi_t} = q_s - 1 + \ln(q_s)
$$

Measure $I_{Dsat} = I_D(V_G = V_D = V_{DDmax}$ and $V_S = V_B)$ $i_{dsat} = I_{Dsat}/I_S$.

$Github - ACM2$

Github - Content

Advanced Compact MOSFET model (ACM)

ACM is a simple MOSFET model to design and simulate Analog, Mixed-Signal, and RF circuits

Examples of PDKs and circuit simulators using the ACM model

Verilog-A code Available!

Paris, June 2024

Automatic parameter extraction − IHP @ Xschem

Also, available for GF180 and SKY130

Automatic parameter extraction - "ACM2 PDK"

• Dependency of the parameters

 V_{T0} , I_S , n, σ, ζ

Paris, June 2024

24/30

CMOS Inverter in 130 nm bulk **VTC and short-circuit current**

CMOS Inverter in 130 nm bulk **Output Voltage and pull-down current**

Paris, June 2024 26/30

Summary – The ACM2 model

- *A truly compact MOSFET model with single-piece functions*
- *Implemented in Verilog-A for simulation*
- *Interchangeable between simulators (SPICE or SPECTRE)*
- *Verify in all three open-source PDKs (Sky130, GF180, IHP-SG13G2)*
- *Helpful to designers (only 5-DC-parameters)*
- *Simplified parameter extraction procedure*
	- *Accepts parameters extracted from simulations or chip measurements*

Acknowledgments

- **LCI-UFSC, Florianopolis, Brazil**
- **TIMA, Univ. Grenoble Alpes, France**
- **IHP, Frankfurt Oder, Germany**
- **Efabless**
- **STIC-AmSud multinational program**
- **CAPES and CNPq agencies, Brazil**

References

- D. G. Alves Neto, C. M. Adornes, G. Maranhão, M. K. Bouchoucha, M. J. Barragan, A. Cathelin, M. C. Schneider, S. Bourdel, C. Galup-Montoro, A 5-DC-Parameter MOSFET Model for Circuit Simulation in QucsStudio and Spectre, Newcas 2023.
- ACM2 Github: https://github.com/ACMmodel/MOSFET_model
- IHP Github : https://github.com/IHP-GmbH/IHP-Open-PDK

- **Available in Github:**
	- **DC model**
	- **Small-signal model**
	- **Dynamic model**
	- **Thermal &**

Flicker noise models (1/f)

"Scan me"

What's next?

- **Introduction to open-source IC design at UFSC**
- **Short design course in**

Questions ?

