

Advanced Compact MOSFET Model: Design-oriented ACM2 model

19/04/2024

"scan me'

Deni Germano Alves Neto

Paris Paris

denialves77@gmail.com

https://github.com/ACMmodel/MOSFET_model

Outline

- Introduction: Compact models
- ACM2 model vs V_{GS} model
- ACM2 model vs PSP
- Parameter extraction and circuit example

What is a compact model ?

- Compact Model is the medium of information exchange between foundry and designer.
- Provides detailed information about device operation & characteristics
- However, needs to be:
 - **Simple** enough to be incorporated in circuit simulators
 - Accurate enough to predict behavior of circuits

Why the need for a design-oriented MOSFET model ?

- Provides a proper bridge between the electrical behavior of the MOSFET and circuit performance though simple analytical equations
- Allows analytical sizing of the transistors
- Avoids excessive dependency of the IC designer in using parametric simulations

with complex models to define the operation point!

IC designers bridge

ACM2: A simple 5-DC-parameter MOSFET model

$$V_{P} = \frac{V_{GB} - V_{T0} + \sigma(V_{DB} + V_{SB})}{n}$$

$$\frac{V_{P} - V_{S(D)B}}{\phi_{t}} = q_{s} - 1 + \ln(q_{s})$$

$$q_{dsat} = q_{s} + 1 + \frac{1}{\zeta} - \sqrt{\left(1 + \frac{1}{\zeta}\right)^{2} + \frac{2q_{s}}{\zeta}}$$

$$\frac{V_{DS}}{\phi_{t}} = q_{s} - q_{d} + \ln\left(\frac{q_{s} - q_{dsat}}{q_{d} - q_{dsat}}\right)$$

$$I_{D} = I_{S} \frac{(q_{s} + q_{d} + 2)}{1 + \zeta(q_{s} - q_{d})} (q_{s} - q_{d})$$
Threshold Slope factor DIBL V_{sat effect}

Grenoble, April 2024

n

 V_{T0}

Specific

current

Is

ζ

σ

Outline

- Introduction: Compact models
- ACM2 model vs V_{GS} model
- ACM2 model vs PSP
- Parameter extraction and circuit example

Inversion charges in terms of the inversion levels

Unified Charge Control Model

$$\frac{V_P - V_{S(D)B}}{\phi_t} = q_{s(d)} - 1 + \ln q_{s(d)}$$

Relationship between normalized inversion charge and inversion level:

 $q_{s(d)} = \sqrt{1 + i_{f(r)} - 1}$

Unified (I)current Control Model

$$\frac{V_P - V_{S(D)B}}{\phi_t} = \sqrt{1 + i_{f(r)}} - 2 + \ln\left(\sqrt{1 + i_{f(r)}} - 1\right)$$
$$I_D = I_F - I_R = I_S[i_f - i_r]$$

 $\rightarrow i_{f(r)}$ is the forward (reverse) inversion level

Grenoble, April 2024

Oversimplified model vs ACM2 model @ Saturation $V_{GB} - V_{GB} - V_{$

$$I_D = \frac{\beta}{2} (V_{GS} - V_T)^2$$

$$\frac{g_m}{I_D} = \frac{1}{V_{GS} - V_T}$$

$$V_P = \frac{V_{GB} - V_T}{n}$$
$$\frac{V_P - V_{S(D)B}}{\phi_t} = \sqrt{1 + i_{f(r)}} - 2 + \ln\left(\sqrt{1 + i_{f(r)}} - 1\right)$$
$$\frac{g_m}{I_D} = \frac{2}{n\phi_t(\sqrt{1 + i_f})}$$

Misconception about overdrive voltage: NMOS example:

$$V_{OV} = V_{GS} - V_T$$

$$V_{OV} = V_P - V_{SB} = \frac{V_{GB} - V_T}{n} - V_{SB}$$

Outline

- Introduction: Compact models
- ACM2 model vs V_{GS} model
- ACM2 model vs PSP
- Parameter extraction and circuit example

Physics-based saturation: design model

Normalized saturation current due to velocity saturation of carriers

Normalized current vs. normalized charge densities

$$i_{dsat} = \frac{2}{\zeta} q_{dsat} \qquad \qquad \frac{I_D}{I_S} = i_{dsat} = \frac{(q_s + q_{dsat} + 2)}{1 + \zeta(q_s - q_{dsat})} (q_s - q_{dsat})$$

$$q_{dsat} = q_s + 1 + \frac{1}{\zeta} - \sqrt{\left(1 + \frac{1}{\zeta}\right)^2 + \frac{2q_s}{\zeta}}$$
or, equivalently

$$q_s = \sqrt{1 + \frac{2}{\zeta}q_{dsat}} - 1 + q_{dsat}$$

Unified Charge Control Model including the effect of velocity saturation

$$\frac{V_P - V_{S(D)B}}{\phi_t} = q_{s(d)} - q_{dsat} - 1 + \ln(q_{s(d)} - q_{dsat})$$

Grenoble, April 2024

Output characteristics including DIBL and v_{sat}

DIBL model: $V_T = V_{T0} - \sigma(V_{SB} + V_{DB})$

Transistor	W/L [µm]	$V_{T0} [mV]$	$I_{S}\left[\mu A\right]$	n	σ	ζ
NMOS	5/0.18	528	5.52	1.37	0.025	0.056

ACM2¹ vs PSP – 130 nm SiGe IHP² $I_D vs V_{GB}$

Characteristics of a LVT NMOS bulk transistor with W /L = 10μ m/ 120 nm.

¹ACM2 : implemented in verilog-A, compiled by OPENVAF, simulated in Ngspice ² Institut for High-Performance Microelectronics (IHP) open-source PDK

ACM2¹ vs PSP – 130 nm SiGe IHP² $I_D vs V_{DS}$

Characteristics of a LVT NMOS bulk transistor with W /L = 10μ m/ 120 nm.

¹ACM2 : implemented in verilog-A, compiled by OPENVAF, simulated in Ngspice ² Institut for High-Performance Microelectronics (IHP) open-source PDK

Outline

- Introduction: Compact models
- ACM2 model vs V_{GS} model
- ACM2 model vs PSP
- Parameter extraction and Circuit example

3PM-ACM model in a nutshell

$$I_{D} = I_{S}[i_{f} - i_{r}] \quad \text{where} \quad I_{S} = \mu C_{ox} n \frac{\phi_{t}^{2}}{2} \frac{W}{L} = I_{SH} \frac{W}{L}$$

$$\frac{V_{P} - V_{S(D)B}}{\phi_{t}} = \sqrt{1 + i_{f(r)}} - 2 + \ln\left(\sqrt{1 + i_{f(r)}} - 1\right) \qquad V_{P} \cong \frac{V_{GB} - V_{T0}}{n} \quad \text{DC eqs}$$
If we choose $i_{f} = 3 \implies V_{GB} = V_{T0}$

$$\frac{V_{DS}}{\phi_{t}} = \sqrt{1 + i_{f}} - \sqrt{1 + i_{r}} + \ln\left(\frac{\sqrt{1 + i_{f}} - 1}{\sqrt{1 + i_{r}} - 1}\right)$$

$$g_{ms(d)} = \frac{2I_{S}}{\phi_{t}} \left(\sqrt{1 + i_{f(r)}} - 1\right) \implies \frac{W}{L} = \frac{g_{ms(d)}\phi_{t}}{2I_{SH}(\sqrt{1 + i_{f(r)}} - 1)}$$

$$g_{m} = \frac{g_{ms} - g_{md}}{n} \qquad \frac{g_{m}}{I_{D}} = \frac{d(\ln I_{D})}{dV_{G}} = \frac{2}{n\phi_{t}(\sqrt{1 + i_{f}} + \sqrt{1 + i_{r}})}$$
Grenoble, April 2024

Extraction of σ

Common-Source Intrinsic-Gain method

ζ extraction

- q_s calculated using parameters (V_{T0} , n, σ) and UCCM.
- Measure $I_{Dsat} = I_D(V_G = V_D = V_{DDmax} and V_S = V_B) \implies i_{dsat} = I_{Dsat}/I_S$.
- Example: NMOS transistor, $V_G = V_D = V_{DDmax}$ and $V_S = V_B = 0V$.

Automatic parameter extraction – IHP @ Xschem

Also, it will be available for GF180 and SKY130

CMOS Inverter in 130 nm bulk VTC and short-circuit current

CMOS Inverter in 130 nm bulk Output Voltage and pull-down current

Github – ACM2

Github - Content

ACMmodel Merge pull request #26 from gabrielm	aranhao/main 🚥	71ee7cd · 6 months ago
Examples	Update SKY130 and GF180 using ACM e	xamples on xschem
Verilog-A	Update PMOS_ACM_2V0.va	
docs	Delete 5PM_NewCAS.pdf	
	Update LICENSE	
C README.md	Update README.md	
README I ECL-2.0 license		

Advanced Compact MOSFET model (ACM)

ACM is a simple MOSFET model to design and simulate Analog, Mixed-Signal, and RF circuits

Examples of PDKs and circuit simulators using the ACM model

Verilog-A code Available!

DSFET_model / Verilog-A / NMOS_ACM_2V0.va								
	Mmodel Update NMOS_ACM_2V0.va							
Code	Blame 291 lines (245 loc) · 12.3 KB							
	//*************************************	**						
	// * ACM NMOS model (Verilog-A)							
	// * 07/2023 V2.0.0							
	//*************************************	**						
	// ************************************	**						
	// * Copyright under the ECL-2.0 license							
	// * Universidade Federal de Santa Catarina							
	// *							
	<pre>// * Current developers: Deni Germano Alves Neto (Doctoral student, UFSC)</pre>							
11	<pre>// * Cristina Missel Adornes (Doctoral student, UFSC)</pre>							
12	// * Gabriel Maranhao (Doctoral student, UFSC)							
13	// *							
	<pre>// * Project Supervisors: Prof. Carlos Galup-Montoro</pre>							
	// * Prof. Marcio Cherem Schneider							
	// ************************************	**						
17								
	`include "constants.vams"							
	`include "disciplines.vams"							
	// function of the algorithm 443 to calculate de normalize charge densities							
	`define algo_443(Z,qn) \							
	if(Z < 0.7385) begin \							
	numeratorD = Z + (4.0/3.0)*Z*Z; \							
	<pre>denominatorD = 1.0 + (7.0/3.0)*Z+(5.0/6.0)*Z*Z; \</pre>							
	WnD = numeratorD/denominatorD; \							
	end else begin \							
	numeratorD = ln(Z)*ln(Z)+2.0*ln(Z)-3.0; \							
	denominatorD = 7.0*ln(Z)*ln(Z) + 58.0*ln(Z) +127.0; \							
30	WnD = ln(Z) - 24.0*(numeratorD/denominatorD): \							

Summary – The ACM2 model

- A truly compact MOSFET model with single-piece functions
- Implemented in Verilog-A for simulation
- Interchangeable between simulators (SPICE or SPECTRE)
- Verify in all three open-source PDKs (Sky130, GF180, IHP-SG13G2)
- *Helpful to designers (only 5-DC-parameters)*
- Simplified parameter extraction procedure
 - Accepts parameters extracted from simulations or chip measurements

Acknowledgments

- LCI-UFSC, Florianopolis, Brazil
- TIMA Univ. Grenoble Alpes, France
- IHP, Frankfurt am Oder, Germany
- STIC-AmSud multinational program
- CAPES and CNPq agencies, Brazil
- CASS Tour France for the invitation

Happening now:

Chipathons:

What's next?

Live demo of the ACM2 @

ACM2 merch

Main References

- C. M. Adornes, D. G. Alves Neto, M. C. Schneider and C. Galup-Montoro, "Bridging the Gap between Design and Simulation of Low-Voltage CMOS Circuits," Journal of Low Power Electronics and Applications, vol. 12, issue 2, June 2022.
- D. G. Alves Neto, C. M. Adornes, G. Maranhão, M. K. Bouchoucha, M. J. Barragan, A. Cathelin, M. C. Schneider, S. Bourdel, C. Galup-Montoro, A 5-DC-Parameter MOSFET Model for Circuit Simulation in QuesStudio and Spectre, Newcas 2023.
- ACM2.0 Github: https://github.com/ACMmodel/MOSFET_model
- IHP Github : https://github.com/IHP-GmbH/IHP-Open-PDK

