# A design-oriented single-piece short-channel MOSFET model

Deni Germano Alves Neto<sup>1</sup>, Gabriel Maranhão<sup>1</sup>, Marcio Cherem Schneider<sup>1</sup> and Carlos Galup-Montoro<sup>1</sup>

<sup>1</sup>Department of Electrical and Electronics Engineering, Federal University of Santa Catarina, 88040-900 Florianópolis, Brazil

*Abstract*—In this article we focus on the understanding of the MOSFET behavior allowed by the ACM2.0 model proposed last year. We discuss the concept of inversion level and its relationship with the carrier density taking velocity saturation into account. The extraction of the five DC parameters of the model based on circuit simulations is briefly developed, accounting for secondorder effects. Finally, simple expressions for the drain current, the gate transconductance as well as the third-order derivative of the current with respect to the gate voltage, including the velocity saturation phenomenon, are provided.

*Index Terms*—ACM Model, MOSFET compact model, Designoriented model, MOSFET, parameter extraction

### I. INTRODUCTION

The first charge-controlled model for MOS transistors was proposed by Maher and Mead in 1987 [\[1\]](#page-4-0). Since then, several research groups have proposed different charge-based MOS-FET models [\[2\]](#page-4-1)–[\[11\]](#page-4-2). In this paper we focus on the ACM2.0 model proposed last year [\[12\]](#page-4-3), [\[13\]](#page-4-4), which has striking similarities with the Gummel-Poon [\[14\]](#page-4-5) core equations, the use of only five DC electrical parameters being one of them. The great advantage of the single-piece equation DC model of the ACM2.0 is its usefulness not only for simulation, but also for properly sizing transistors in the pre-simulation phase of a design flow. Furthermore, jointly with the open-source PDKs and tools, simple and accurate compact models in open-source simulators also help the entrance of new engineers in the integrated circuit design domain [\[15\]](#page-4-6).

Section II recalls the fundamentals of the ACM model while Sections III and IV discuss the carrier charge profile along the channel and its relationship with the inversion level. Section V briefly presents the parameter extraction based on specific circuit simulations. Finally, in Section VI some simplified expressions for the transconductance and its derivatives are compared with more exact ones.

## II. FUNDAMENTALS

The fundamental approximation of the ACM model is the linear dependence of the inversion charge density  $Q_I$  on the surface potential  $\phi_s$ , for constant gate voltage [1], [5], *i.e.* 

<span id="page-0-0"></span>
$$
dQ_I = nC_{OX}d\phi_s \tag{1}
$$

In [\(1\)](#page-0-0),  $C_{OX}$  is the oxide capacitance per unit area and n is the slope factor. The drain current, calculated using the chargesheet model [\[16\]](#page-4-7), [\[17\]](#page-4-8), with both drift and diffusion currents, is

<span id="page-0-1"></span>
$$
I_D = \mu W \left( -Q_I \frac{d\phi_s}{dy} + \phi_t \frac{dQ_I}{dy} \right) \tag{2}
$$

where  $\mu$  is the carrier mobility,  $\phi_t$  is the thermal voltage, W is the channel width, and  $y$  is the coordinate along the channel length. The effect of carrier velocity saturation, included in the mobility model as in [1], [6]. is

<span id="page-0-2"></span>
$$
\mu = \frac{\mu_s}{1 + \frac{\mu_s}{v_{sat}} \frac{d\phi_s}{dy}}
$$
(3)

where  $v_{sat}$  is the saturation velocity and  $\mu_s$  the carrier mobility of a long-channel device. From [\(1\)](#page-0-0), [\(2\)](#page-0-1) and [\(3\)](#page-0-2) the relationship between the differential of channel length and the differential of the inversion charge is

<span id="page-0-3"></span>
$$
dy = -\frac{\mu_s W}{nC_{OX}I_D} \left( Q_I - nC_{OX}\phi_t + \frac{I_D}{Wv_{sat}} \right) dQ_I \tag{4}
$$

Since  $n$  and  $I_D$  are constant along the channel, we can define a virtual charge density  $Q_V$  that differs from the real charge by a constant term,  $i.e.$ 

<span id="page-0-4"></span>
$$
Q_V = Q_I - nC_{OX}\phi_t + \frac{I_D}{Wv_{sat}}
$$
\n<sup>(5)</sup>

Rewriting [\(4\)](#page-0-3) in terms of the virtual charge [\(5\)](#page-0-4) yields

<span id="page-0-5"></span>
$$
dy = -\frac{\mu_s W}{nC_{OX} I_D} Q_V dQ_V \tag{6}
$$

For convenience, in what follows, the charge densities are normalized to the thermal charge  $-nC<sub>OX</sub>\phi_t$  and the current is normalized to the specific current  $I<sub>S</sub>$ , given by

$$
I_S = \frac{W}{L} \mu_s n C_{OX} \frac{\phi_t^2}{2}
$$
 (7)

where  $L$  is the transistor channel length.

Thus, we rewrite [\(5\)](#page-0-4) in terms of the normalized variables  $q_v$  and  $i_d$  as

$$
q_v = q + 1 - \zeta \frac{i_d}{2} \tag{8}
$$

where  $\zeta$ , the short-channel parameter, defined as the ratio of a diffusion-related velocity to the saturation velocity, is

$$
\zeta = \frac{\mu_s \phi_t}{L v_{sat}}\tag{9}
$$

while  $(6)$  is rewritten as

<span id="page-1-0"></span>
$$
\frac{dy}{L} = -\frac{2}{i_d} q_v dq_v \tag{10}
$$

Integrating [\(10\)](#page-1-0) between source and drain, we obtain the expression of the drain current in terms of the normalized virtual charges at source and drain, considering drift, diffusion and velocity saturation

<span id="page-1-1"></span>
$$
i_d = q_{vs}^2 - q_{vd}^2 \tag{11}
$$

Expression [\(11\)](#page-1-1) is instrumental in understanding the effect of the velocity saturation on the MOSFET operation, as will be shown in the next section.

Finally, the complete set of five DC equations of ACM2.0 model [\[13\]](#page-4-4) are shown in Table [I,](#page-1-2) where the symbols have their conventional meanings.

TABLE I THE FIVE DC EQUATIONS OF THE ACM MODEL.

<span id="page-1-8"></span><span id="page-1-2"></span>

#### <span id="page-1-7"></span>III. CARRIER CHARGE PROFILE ALONG THE CHANNEL

Integrating [\(10\)](#page-1-0) between source terminal ( $y = 0$ ) and an arbitrary point  $y$  of the channel, along with [\(11\)](#page-1-1), gives

$$
q_v^2 = \left(1 - \frac{y}{L}\right) q_{vs}^2 + \frac{y}{L} q_{vd}^2 \tag{17}
$$

which, after writing the virtual charges in terms of the real charges, gives

$$
\left(q+1-\zeta\frac{i_d}{2}\right)^2 = \left(1-\frac{y}{L}\right)\left(q_s+1-\zeta\frac{i_d}{2}\right)^2
$$

$$
+\frac{y}{L}\left(q_d+1-\zeta\frac{i_d}{2}\right)^2 \quad (18)
$$

where  $q$  is the normalized carrier density at coordinate  $y$ .

For a long-channel transistor in weak inversion, [\(18\)](#page-1-3) simplifies to the well-known linear variation [\[7\]](#page-4-9) of the carrier charge density along the channel in [\(19\)](#page-1-4).

<span id="page-1-4"></span>
$$
q = \left(1 - \frac{y}{L}\right) q_s + \frac{y}{L} q_d \tag{19}
$$

Figure [1](#page-1-5) shows plots of equation [\(18\)](#page-1-3) of the carrier charge density profile along the transistor channel, normalized to the source charge density, for  $\zeta = 0.1$ , with  $V_{DS} \rightarrow \infty$ , while Fig. [2](#page-1-6) represents the channel potential along the channel, calculated using the ACM2.0 model..



<span id="page-1-5"></span>Fig. 1. Normalized carrier charge density along the channel for  $\zeta = 0.1$ .



<span id="page-1-6"></span>Fig. 2. Normalized potential profile along the channel for  $\zeta = 0.1$ .

#### IV. INVERSION-LEVEL-BASED DESIGN

For long-channel devices, as is the case for the  $V_T$  extractor circuit of Section V, the channel potential profile is easily determined using the inversion level concept, as explained next.

<span id="page-1-3"></span>For  $\zeta = 0$ , equation [\(11\)](#page-1-1) can be rewritten as

$$
i_d = i_f - i_r \tag{20}
$$

where the normalized inversion levels  $i_{f(r)}$  are defined in terms of the normalized carrier charge densities as

$$
i_{f(r)} = (q_{s(d)} + 1)^2 - 1 \tag{21}
$$

or, inversely as

<span id="page-2-0"></span>
$$
q_{s(d)} = \sqrt{1 + i_{f(r)}} - 1
$$
 (22)

Using [\(22\)](#page-2-0) to write the inversion charge in terms of the inversion level in [\(10\)](#page-1-0) we obtain, for  $\zeta = 0$ ,

<span id="page-2-1"></span>
$$
\frac{dy}{L} = -\frac{di}{i_d} \tag{23}
$$

Clearly, from [\(23\)](#page-2-1), the inversion level varies linearly across the channel as

<span id="page-2-4"></span>
$$
i = \left(1 - \frac{y}{L}\right)i_f + \frac{y}{L}i_r \tag{24}
$$

Before moving to the next section, we will explore a characteristic of the self-cascode MOSFET (SCM) that is employed to extract the threshold voltage  $V_T$  and the specific current  $I<sub>S</sub>$ . The inversion coefficient i of the self-cascode transistor of Fig. [3a](#page-2-2) can be determined using its equivalent single transistor in Fig. [3b.](#page-2-3) Expression [\(24\)](#page-2-4) gives, for  $i_r = 0$ , the inversion coefficient  $i$  at position  $y$  in the channel, in terms of the inversion level at the source as

<span id="page-2-5"></span>
$$
i_f = \alpha i \tag{25}
$$

where  $\alpha = \frac{L}{L-y}$ 

Combining [\(22\)](#page-2-0), [\(25\)](#page-2-5) and [\(15\)](#page-1-7) with  $q_{dsat} = 0$  yields

<span id="page-2-6"></span>
$$
\frac{V_Y}{\phi_t} = \sqrt{1 + i_f} - \sqrt{1 + \frac{i_f}{\alpha}} + \ln\left(\frac{\sqrt{1 + i_f} - 1}{\sqrt{1 + \frac{i_f}{\alpha}} - 1}\right) \quad (26)
$$

In weak inversion ( $i_f \ll 1$ ), [\(26\)](#page-2-6) reduces to

$$
\frac{V_Y}{\phi_t} = \ln \alpha \tag{27}
$$

Thus,  $V_Y$  is proportional to the absolute temperature with a slope dependent only on a geometric ratio.



<span id="page-2-2"></span>Fig. 3. (a) Self-cascode MOSFET or taped transistor [\[18\]](#page-4-10) and (b) its representation as a single transistor with width and length equal to  $W$  and  $L$ , respectively

## V. PARAMETER EXTRACTION BASED ON CIRCUIT SIMULATION

## *A. Long-channel*  $I_S$  *and*  $V_T$  *extraction*

In the self-biased current source (SBCS) of Fig. [4](#page-2-7) [\[19\]](#page-4-11)- [\[20\]](#page-4-12) the two SCMs operate at the same current. The operational amplifier forces the intermediate voltages  $V_X$  and  $V_Y$  to be the same. If the self-cascode  $M_1-M_2$  operates in weak inversion, it follows that

$$
\ln \alpha_1 = \sqrt{1 + i_{f3}} - \sqrt{1 + \frac{i_{f3}}{\alpha_3}} + \ln \left( \frac{\sqrt{1 + i_{f3}} - 1}{\sqrt{1 + \frac{i_{f3}}{\alpha_3}} - 1} \right) (28)
$$

where  $\alpha_1 = 1 + \frac{S_2}{S_1}$  and  $\alpha_3 = 1 + \frac{S_4}{S_3}$  are geometric factors of the SCMs and  $S = \frac{W}{L}$  is the transistor aspect ratio.

Thus,  $i_{f3}$  (the inversion level at the source of M<sub>3</sub>) depends only on the geometrical factors  $\alpha_1$  and  $\alpha_3$ ; consequently,  $i_{f3}$ is independent of both the temperature and the technological parameters. The output current  $I_{out} = I_{S3,4}i_{f3}$  is proportional to the specific current of  $M_4$ . The term  $I_{S3,4}$  is the combination of the specific currents of  $M_3$  and  $M_4$ . For simplicity, if  $M_3$ is identical to  $M_4$ ,  $I_{S3,4} = \frac{I_{S3}}{2}$ . Thus, the SBCS is a specific current extractor. If  $i_{f3} = 3$ , the gate-to-substrate voltage of  $M_3$  equals  $V_T$ ; thus, the circuit in Fig. [4](#page-2-7) also operates as a threshold voltage extractor. However, under low inversion coefficients, the sensitivity of the current of the SBCS to the drain voltage of saturated transistors can be relatively high [\[21\]](#page-4-13). To reduce the sensitivity of the SBCS we designed a circuit for having  $i_{f3} = 81$  and added the branch M<sub>5</sub>-M<sub>6</sub> biased by the same current as in the core circuit. The SCM  $M_5-M_6$ is a 27 times scaled replica of  $M_3-M_4$ . Such an arrangement allows obtaining  $i_{f5} = 3$ ; thus, the gate voltage of M<sub>5</sub> equals the threshold voltage.



<span id="page-2-7"></span>Fig. 4. Self-biased current source composed of two SCMs and an operational amplifier. A scaled replica  $(M_5-M_6)$  of SCM  $M_3-M_4$  is included for the extraction of  $V_T$ .

#### <span id="page-2-3"></span>*B. Slope factor and short-channel parameters extraction*

As shown in [\[10\]](#page-4-14), the DIBL parameter  $\sigma$  can be determined as the inverse of the voltage gain of the common source topology. In an analogous way, the slope factor  $n$  is the inverse of the voltage gain of the source follower. The saturation velocity parameter  $\zeta$  can be calculated as in [\[12\]](#page-4-3).

Fig. [5](#page-3-0) compares the BSIM 4.5 with the ACM2.0 DC transfer characteristics of a minimum channel length pMOS.

The p-channel MOSFET used in Fig. [5](#page-3-0) has the following parameters:  $V_{T0} = -525$  mV,  $I_S = 1.82$   $\mu A$ ,  $n = 1.40$ ,  $\sigma =$ 0.024 and  $\zeta = 0.035$ .



<span id="page-3-0"></span>Fig. 5. DC characteristic  $I_D$  vs  $V_G$  for  $V_B = 1.8$  V and  $V_{SD} = 1.8$  V of a p-channel MOSFET with  $W/L = 5 \mu m/180$  nm from a 180-nm technology.

## VI. DESIGN-ORIENTED SMALL-SIGNAL PARAMETERS

When the electrons at the drain end of the channel reach the saturation velocity, the drain current is expressed as [\[16\]](#page-4-7)

<span id="page-3-1"></span>
$$
I_{Dsat} = -Wv_{sat}Q_{IDsat} = \frac{2I_S}{\zeta}q_{dsat} \tag{29}
$$

From  $(29)$  and  $(14)$  we get the transconductance in saturation

<span id="page-3-2"></span>
$$
g_{msat} = \frac{\partial I_{Dsat}}{\partial V_G}
$$
  
= 
$$
\frac{2I_S}{n\phi_t} \frac{\sqrt{1 + i_{dsat}}}{1 + \zeta\sqrt{1 + i_{dsat}}} \frac{\sqrt{1 + i_{dsat}} - 1 + \frac{\zeta i_{dsat}}{2}}{\sqrt{1 + i_{dsat}} + \frac{\zeta i_{dsat}}{2}}
$$
 (30)

In most cases [\(30\)](#page-3-2) can be approximated by

<span id="page-3-4"></span>
$$
g_{msat} \approx \frac{2I_S}{n\phi_t} \frac{\sqrt{1 + i_{dsat}} - 1}{1 + \zeta\sqrt{i_{dsat}}}
$$
(31)

if  $i_{dsat} \to \infty$  then  $g_m \to \frac{2I_s}{n\phi_t\zeta} = WC_{ox}v_{sat}$ Fig [6](#page-3-3) shows the good matching between [\(30\)](#page-3-2) and [\(31\)](#page-3-4). A minor correction of equation [\(5\)](#page-0-4) in [\[22\]](#page-4-15) gives

$$
\frac{q_{dsat}}{q_s} \cong \frac{\zeta q_s + 2\zeta}{\zeta q_s + 2(1+\zeta)}\tag{32}
$$

<span id="page-3-5"></span>
$$
i_{dsat} = \frac{2}{\zeta} q_{dsat} \cong \frac{q_s^2 + 2q_s}{1 + \zeta \left(\frac{q_s}{2} + 1\right)}\tag{33}
$$

Taking the third derivative of [\(33\)](#page-3-5) and multiplying by  $I<sub>S</sub>$ yields

<span id="page-3-6"></span>
$$
g_{msat3} = \frac{16I_S}{\left(n\phi_t\right)^3} \frac{q_s}{\left(q_s+1\right)^3} \frac{2 - 2\zeta q_s - 3\zeta q_s^2}{\left(q_s+1\right)^4} \tag{34}
$$

The unexpected accuracy of [\(34\)](#page-3-6), particularly for the location of the so-called 'sweet spot', is shown in Fig. [7.](#page-3-7)

The n-channel MOSFET used in Figs. [6](#page-3-3) and [7](#page-3-7) has the following parameters:  $V_{T0} = 528$  mV,  $I_S = 5.52$   $\mu A$ ,  $n =$ 1.43,  $\sigma = 0.026$  and  $\zeta = 0.056$ .



Fig. 6.  $g_{msat}$  for an n-channel MOSFET with  $W/L = 5 \mu m / 180$  nm from a 180-nm technology.

<span id="page-3-3"></span>

<span id="page-3-7"></span>Fig. 7.  $g_{msat3}$  for an n-channel MOSFET with  $W/L = 5 \mu m / 180$  nm from a 180-nm technology.

## VII. CONCLUSION

This paper presented several design-oriented approximations of the charge-based equations of the ACM model, useful for DC bias as well as for RF design. Additionally, a designer-friendly parameter extraction procedure based on circuit simulations was proposed.

### ACKNOWLEDGMENT

This study was financed in part by the Coordenação de Aperfeicoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001, through international cooperation programs STIC-AmSud and PRINT.

## **REFERENCES**

- <span id="page-4-0"></span>[1] M. A. Maher and C. A. Mead, "A physical charge-controlled model for MOS transistors," *in Advanced Research in VLSI, P. Losleben (ed.), MIT press*, 1987.
- <span id="page-4-1"></span>[2] C.-K. Park, C.-Y. Lee, K. Lee, B.-J. Moon, Y. H. Byun, and M. Shur, "A unified current-voltage model for long-channel nMOSFETs," *IEEE Transactions on Electron Devices*, vol. 38, no. 2, pp. 399–406, 1991.
- [3] K. Lee, M. Shur, T. A. Fjeldly, and T. Ytterdal, *Semiconductor Device Modeling for VLSI*. USA: Prentice-Hall, Inc., 1993.
- [4] B. Iñiguez and E. Moreno, "Explicit  $C_{\infty}$  continuous and general model for nMOSFETs," *Electronics Letters*, vol. 29, no. 11, pp. 1036–1037, may 1993.
- [5] A. Cunha, M. Schneider, and C. Galup-Montoro, "An MOS transistor model for analog circuit design," *IEEE Journal of Solid-State Circuits*, vol. 33, no. 10, pp. 1510–1519, 1998.
- [6] O. da Costa Gouveia-Filho, A. Cunha, M. Schneider, and C. Galup-Montoro, "Advanced compact model for short-channel MOS transistors," in *Proceedings of the IEEE 2000 Custom Integrated Circuits Conference (Cat. No.00CH37044)*. IEEE.
- <span id="page-4-9"></span>[7] E. A. Vittoz and C. C. Enz, *Charge-based MOS transistor modeling: the EKV model for low-power and RF IC design*. John Wiley & Sons, Ltd, 2006.
- [8] C. Enz, F. Chicco, and A. Pezzotta, "Nanoscale MOSFET modeling: Part 1: The simplified EKV model for the design of low-power analog circuits," *IEEE Solid-State Circuits Magazine*, vol. 9, no. 3, pp. 26–35, 2017.
- [9] F. Chicco, A. Pezzotta, and C. C. Enz, "Charge-based distortion analysis of nanoscale MOSFETs," *IEEE Transactions on Circuits and Systems I: Regular Papers*, vol. 66, no. 2, pp. 453–462, 2019.
- <span id="page-4-14"></span>[10] C. M. Adornes, D. G. Alves Neto, M. C. Schneider, and C. Galup-Montoro, "Bridging the gap between design and simulation of lowvoltage CMOS circuits," *Journal of Low Power Electronics and Applications*, vol. 12, no. 2, 2022.
- <span id="page-4-2"></span>[11] D. A. Pino-Monroy, P. Scheer, M. K. Bouchoucha, C. Galup-Montoro, M. J. Barragan, P. Cathelin, J.-M. Fournier, A. Cathelin, and S. Bourdel, "Design-oriented all-regime all-region 7-parameter short-channel MOSFET model based on inversion charge," *IEEE Access*, vol. 10, pp. 86 270–86 285, 2022.
- <span id="page-4-3"></span>[12] D. G. A. Neto, C. M. Adornes, G. Maranhão, M. K. Bouchoucha, M. J. Barragan, A. Cathelin, M. C. Schneider, S. Bourdel, and C. Galup-Montoro, "A 5-DC-parameter MOSFET model for circuit simulation in QucsStudio and SPECTRE," in *2023 21st IEEE Interregional NEWCAS Conference (NEWCAS)*, 2023, pp. 1–5.
- <span id="page-4-4"></span>[13] Advanced Compact MOSFET model (ACM) repository. [Online]. Available: [https://github.com/ACMmodel/MOSFET](https://github.com/ACMmodel/MOSFET_model)\_model
- <span id="page-4-5"></span>[14] H. K. Gummel and H. C. Poon, "An integral charge control model of bipolar transistors," *The Bell System Technical Journal*, vol. 49, no. 5, pp. 827–852, 1970.
- <span id="page-4-6"></span>[15] B. Murmann, "Democratizing IC design: The SSCS PICO program," January 2023. [Online]. Available:<https://youtu.be/O0J7El98udQ>
- <span id="page-4-7"></span>[16] C. Galup-Montoro and M. C. Schneider, *MOSFET Modeling for Circuit Analysis and Design*. USA: World Scientific Publishing Co., Inc., 2007.
- <span id="page-4-8"></span>[17] Y. Tsividis and C. McAndrew, *Operation and Modeling of the MOS Transistor*, 3rd ed. Oxford University Press, 2012.
- <span id="page-4-10"></span>[18] C. Enz and E. Vittoz, "CMOS low-power analog circuit design," in *Emerging Technologies, Tutorial for 1996 Int. Symp. on Circuits and Systems*. R. Cavin and W. Liu, Eds. Piscataway: IEEE Service Center, 1996, pp. 79–133.
- <span id="page-4-11"></span>[19] C. Galup and M. Schneider, "The compact all-region MOSFET model: theory and applications," in *2018 16th IEEE International New Circuits and Systems Conference (NEWCAS)*, 2018, pp. 166–169.
- <span id="page-4-12"></span>[20] P. Heim, S. Schultz, and M. Jabri, "Technology-independent biasing technique for CMOS analogue micropower implementations of neural networks," in *Proceedings of the 4th IEEE International Workshop on Cellular Neural Networks and their Applications (CNNA-95)*, 1995, pp.  $9 - 12$
- <span id="page-4-13"></span>[21] E. Camacho-Galeano, C. Galup-Montoro, and M. Schneider, "A 2nW 1.1-V self-biased current reference in CMOS technology," *IEEE Transactions on Circuits and Systems II: Express Briefs*, vol. 52, no. 2, pp. 61–65, 2005.
- <span id="page-4-15"></span>[22] P. da Silva, C. Galup-Montoro, M. Schneider, and F. R. de Sousa, "Design-oriented model for nonlinearities in MOSFETs," in *2008 Joint*

*6th International IEEE Northeast Workshop on Circuits and Systems and TAISA Conference*, 2008, pp. 153–156.