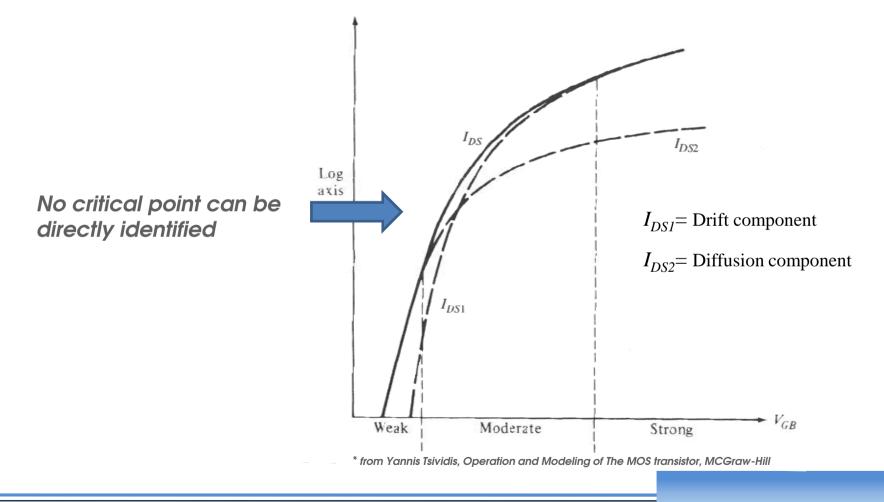
The direct determination of MOSFET parameters from the $\mathbf{I}_{\rm D}$ versus $\mathbf{V}_{\rm S}$ curve at low $\mathbf{V}_{\rm DS}$

Carlos Galup-Montoro, Márcio Bender Machado, Thiago de Oliveira, Márcio Cherem Schneider

Federal University of Santa Catarina Brazil


MOS-AK Workshop, December 2010

Contents

- **1** Threshold Voltage definitions
- ${\bf 2}$ Determination of MOSFET parameters from $I_D \ x \ V_S$ curve, (channel_conductance)/Id method
- **3** Comparison with gm/Id method
- **4** Applications of the threshold voltage determinations
- **5** Conclusions

Threshold voltage (VT)

Near the threshold condition (moderate inversion), both the drift and diffusion transport mechanisms are important.

Classical threshold voltage (VT) definition

Classical (surface potential based) definition of threshold:

$$\phi_{S} = 2\phi_{F} + V_{C}$$

- Where : ϕ_s surface potential for V_G=V_T
 - $\phi_{\rm F}$ Fermi potential in the substrate
 - V_c channel potential

In principle the direct determination of the threshold voltage is possible

1) calculate the saturation drain current I_{DTh} for $\phi_s = 2\phi_F + V_C$

2) inject I_{DTh} in the transistor and measure $V_{G} = V_{T}$

Drawbacks

- geometrical (W, L) and technological parameters (mobility, oxide thickness,..) are needed to calculate I_{DTh}
- the transistor operates in the saturation region where several secondary effects are relevant

Current based threshold definition

$$V_{\mathbf{T}} = V_{\mathbf{G}}, \text{ when } I_{drift} = I_{diff}$$

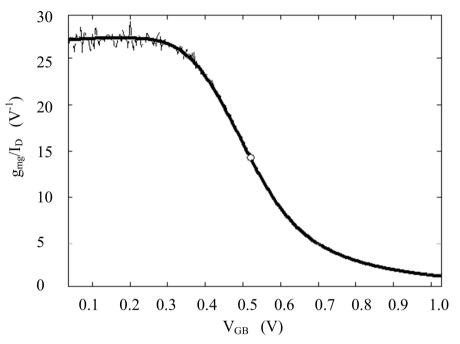
For a MOSFET the current defined threshold corresponds to an inversion charge density equal to the thermal charge density (the effective channel capacitance per unit area times the thermal voltage).

For a bulk MOSFET

$$Q'_{I} = -nC'_{OX} \phi_{t}$$

where n is the slope factor

Relationship between threshold voltages

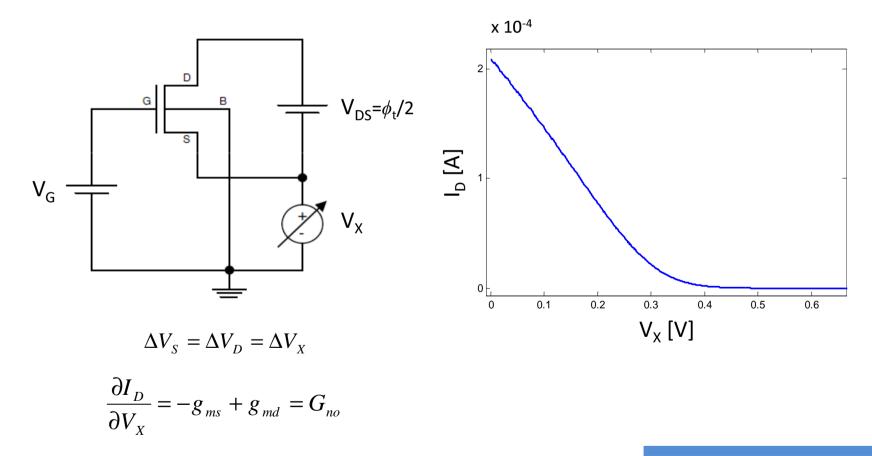

Threshold Definition	Physical Meaning	Value of ϕ_S at threshold	Value of <i>Q'</i> _l at threshold	Difference in V _{T0} relative to classical definition
$\phi_S = 2\phi_F + V_C$	Surface concentration of electrons= bulk concentration of holes	$2\phi_F + V_C$	$-(n-1)C'_{ox}\phi_t$	0
$Q_I = -nC_{ox}\phi_t$	50% drop (relative to the peak) in the g _m /I _D curve	$2\phi_F + V_C + \phi_t \ln\left(\frac{n}{n-1}\right)$	$-nC'_{ox}\phi_t$	$\phi_t \left[1 + n \ln \left(\frac{n}{n-1} \right) \right]$

'Ideal' threshold voltage extraction procedure

- No parameters are needed to calculate the threshold current
- The transistor operates at low current levels and in the linear region to minimize series resistances and short channel effects

gm/Id curve in the linear region

VT determination from gm/Id curve in the linear region



• Transconductance-to-current ratio for $V_{DS} \cong \phi_t/2$ and $V_S=0$. Threshold $g_m/I_D \cong 0.5 (g_m/I_D)_{max}$

Drawback $(g_m/I_D)_{max}$ has some dependence on V_G

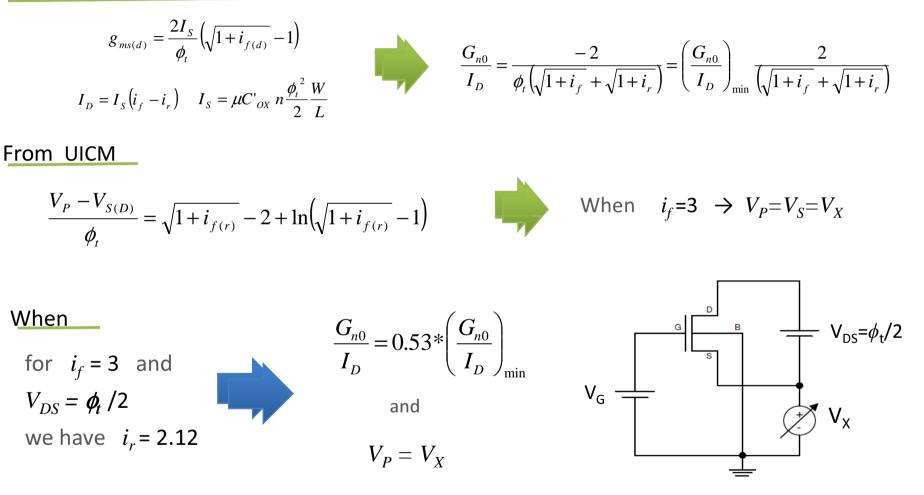
The new (channel conductance G_{n0}/Id) methodology

Direct determination of MOSFET parameters from the ID versus VS curve at low VDS

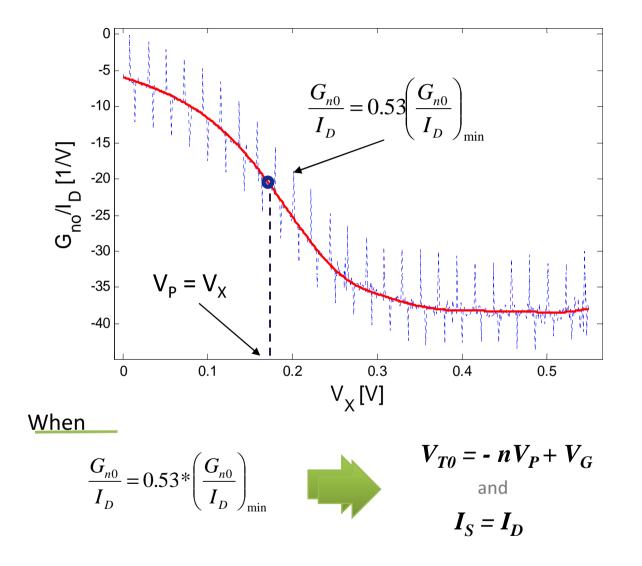
The Gn0/Id methodology

Transistor operation:

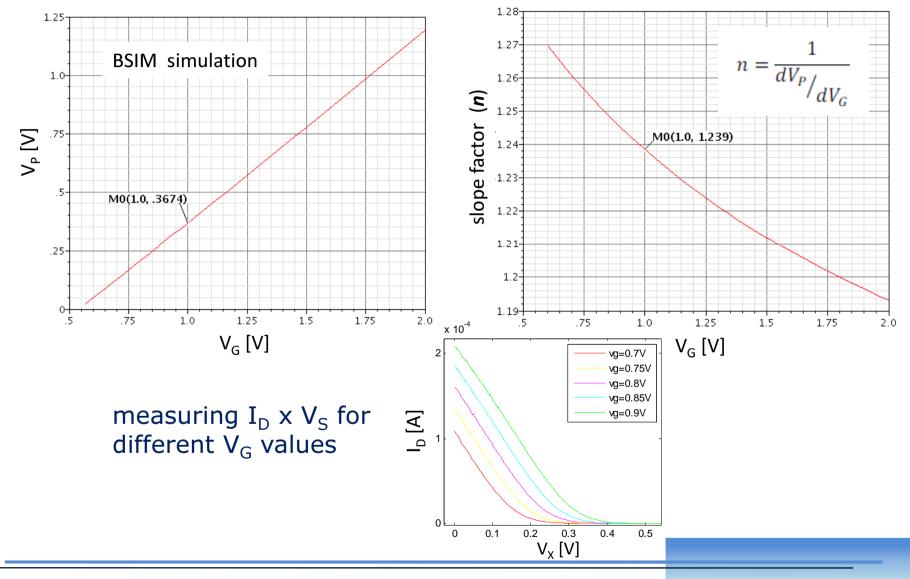
- low V_{DS}
- weak and moderate inversion
- \bullet fixed $V_{\rm G}$


Negligible effects of :

- series resistances
- field dependent mobility
- slope factor variation
- channel length modulation



The Gn0/Id methodology – extract V_T and I_s


From transistor model

The Gn0/Id methodology – extract V_T and I_S

The Gn0/Id methodology – extract pinch-off voltage V_P and slope factor *n*

Gn0/Id x gm/Id methods

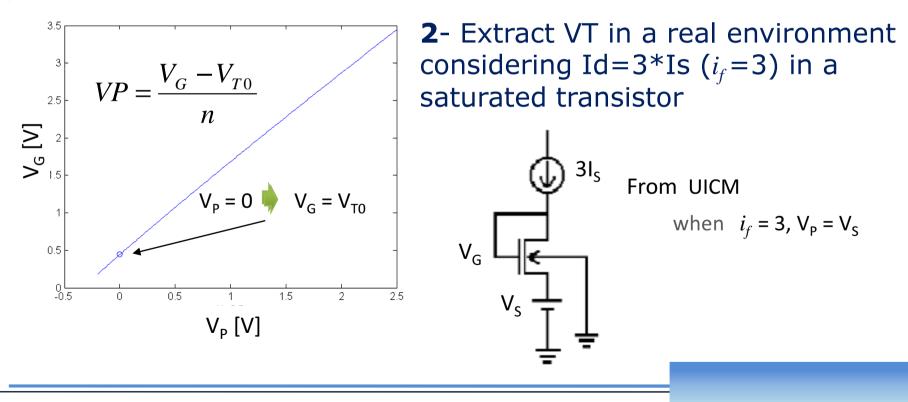
MOS-AK Workshop, December 2010

Gn0/Id x gm/Id methods

$0.18 \ \mu m \ technology$

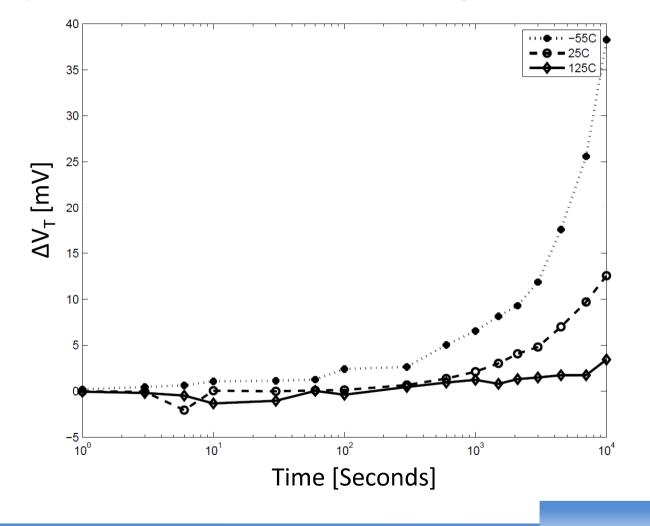
$\frac{L_{mask}(W/L=100) 0.2 \ \mu m}{V_{T}(mV) \ gm/l_{D}} 514 499 494 488 484 478 456}{V_{T}(mV) \ Gn0/l_{D}} 515 495 490 486 481 475 455$	$\frac{V_{T} (mV) gm/l_{h}}{V_{T} (mV) GnO/l_{h}} \frac{514}{515} \frac{499}{494} \frac{488}{484} \frac{484}{481} \frac{478}{475} \frac{456}{455}$		ν _{το}							
$\frac{V_{T} (mV) Gn0/I_{D}}{S15} 515 495 490 486 481 475 455$ $\frac{V_{T} (mV) Gn0/I_{D}}{S15} 515 495 490 486 481 475 455$ $\frac{V_{T} (mV) Gn0/I_{D}}{S15} 515 495 490 486 481 475 455$ $\frac{V_{T} (mV) Gn0/I_{D}}{S12} 515 495 490 486 481 475 455$ $\frac{V_{T} (mV) Gn0/I_{D}}{S12} 515 495 490 486 481 475 455$ $\frac{V_{T} (mV) Gn0/I_{D}}{S12} 515 495 490 486 481 475 455$ $\frac{V_{T} (mV) Gn0/I_{D}}{S12} 520 490 486 481 475 455$ $I_{S} when V_{GS} \approx V_{T0}$	$\frac{V_{T} (mV) Gn0/l_{D}}{S} 515 495 490 486 481 475 455$		L mask (W/L=100)	0.2 μm	0.3 μm	0.4 μm	0.5 μm	0.6 µm	0.8 µm	2.0 μm
$\frac{1}{V_{mask}(W/L=100) 0.2 \ \mu m 0.3 \ \mu m 0.4 \ \mu m 0.5 \ \mu m 0.6 \ \mu m 0.8 \ \mu m 2.0 \ \mu m}{1_{c}(\mu A) \ gm/l_{D}} 23.82 18.21 16.19 15.67 15.54 15.94 16.62 \\ 1_{c}(\mu A) \ Gn0/ID 21.47 15.21 13.27 13.53 13.41 13.72 14.65 \\ I_{s} \ when \ V_{Gs} \approx V_{T0}$	S <u>μ_{mask} (W/L=100)</u> 0.2 μm 0.3 μm 0.4 μm 0.5 μm 0.6 μm 0.8 μm 2.0 μm <u>l_s (μA) gm/l_n 23.82 18.21 16.19 15.67 15.54 15.94 16.62 <u>l_s (μA) Gn0/ID 21.47 15.21 13.27 13.53 13.41 13.72 14.65</u> </u>		V_{T} (mV) gm/I _D	514	499	494	488	484	478	456
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		V_{T} (mV) Gn0/I _D	515	495	490	486	481	475	455
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	_ l _s						_		
$I_{s} (\mu A) Gn0/ID 21.47 15.21 13.27 13.53 13.41 13.72 14.65$ $I_{s} when V_{Gs} \approx V_{T0}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $		0.3 μm 0.4 μm	0.5 μm	0.6 µm	0.8 μm	2.0 μm			
I _s when V _{GS} ≈V _{T0}	Is when $V_{GS} \approx V_{TO}$		1	15.67	15.54	1	16.62			
gm/ld method Gno/ld method 510 500	gm/ld method Gno/ld method 500 500 500 500 500 500 500 500 500 50	I _s (μΑ) Gn0/ID 21.47	15.21 13.27	13.53	13.41	13.72	14.65			
gm/ld method 510 500 - 6	$ \begin{array}{c} \hline gm/ld method \\ \hline Gno/ld method \\ \hline 500 \\ \hline 500 \\ \hline \\ \hline \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$					I _s wher	n V _{GS} ≈V _{T0}			
	470-					510- 500-	000	T	t	

ا_S [امA]


Applications

Applications using VT extraction

- Transistor aging (or electrical stress)
- Matching assessment
- Temperature drift characterization
- Radiations effects on MOS transistor


Applications

1- Extract IS and VT in a non-noisy environment using an accurate method (gm/Id or Gn0/Id)

Applications

Example of HCI stress measurement using VT variation

Conclusions

- New procedure for direct determination of the threshold voltage and some other important electrical parameters with minimum influence of second order effects.
- The threshold voltage is determined at a constant gate-tosubstrate voltage, at a low drain-to-source voltage and with transistor operation in the weak and moderate inversion regions.
- Under these operating conditions the effects of series resistances, mobility and slope factor variations, and channel length modulation are practically negligible, allowing a direct determination of the threshold voltage and of the DIBL effect.