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ABSTRACT 

 
Compact models for the MOSFET are based on the 

decomposition of the two-dimensional problem into two 
one-dimensional problems. Since a compact MOSFET 
model core consists of an input voltage equation, and an 
output current equation, a consistent compact model must 
approximate these two (orthogonal) equations consistently. 
In this study we will review some of the existing compact 
models, beginning with the Pao-Sah formula and including 
classical strong inversion, surface potential, and charge 
control models. A simple consistency test is applied to 
some compact models regarding the small-signal output 
conductance of the transistor. 

 
Keywords: MOS transistor, MOSFET models, compact 
models 
 
 

1 INTRODUCTION 
 
 
Compact models for the MOSFET are based on the 

decomposition of the two (three)-dimensional problem into 
two (three) one-dimensional problems (1-D) [1]. For a 
long-channel device, the gradual channel approximation is 
valid, i.e., the longitudinal (y-direction) component of the 
electric field can be assumed to be much smaller than the 
transversal (x-direction) component. The 1-D x-equation, 
which is known as the input voltage equation, relates the 
applied gate voltage to the electric conditions of the 
semiconductor surface. The 1-D y-equation, which is 
known as the output current equation, relates the current 
flowing through drain and source to the x-solution and the 
voltages applied to the source and drain. 

Because a compact MOSFET model core consists of an 
input voltage equation and an output current equation, a 
consistent compact model must approximate these two 
(orthogonal) equations consistently. In this study we will 
review some compact models, including the classical strong 
inversion, surface potential and charge control models and 
check their consistency with the Pao-Sah formula, which is 
highly physical and has served as a reference to test the 

accuracy of compact models [1]. The consistency test to be 
applied in this paper consists in verifying whether the 
(small-signal) output conductance of the MOSFET 
calculated with the inversion charge density at the drain end 
of the channel coincides with that calculated from the 
derivative of the drain current with respect to the drain 
voltage. The (non) coincidence of the results attests to the 
(non) consistency of the one-dimensional x-equation with 
the y-equation.  

This simple consistency test regarding the (small-signal) 
output conductance of the transistor is applied to some 
popular MOSFET models. 
 
 

2 CONSISTENCY TEST 
 
 

The Pao-Sah current equation [2] is 
 

dy
dVQWI C

ID ′−= µ          (1) 

 
where W is the channel width, µ is the carrier mobility, IQ′  
is the inversion charge density and VC is the channel 
potential (quasi-Fermi potential splitting). Expression (1) 
includes both the drift and diffusion transport mechanisms, 
and gives an exact model of the long-channel MOSFET. 
For this reason Eq. (1) is used as a golden reference to test 
the accuracy of compact models. 

Since the current is constant along the channel, the 
integration of Eq. (1) from source to drain, assuming 
constant mobility, yields 
 

∫ ′−=
D

S

V

V

CID dVQ
L
WI µ          (2) 

 
where L is the channel length and VD and VS are the drain-
to-bulk and source-to-bulk potentials, respectively. 

Incremental (small-signal) parameters are essential for 
analog and RF design. Also, in the context of compact 
modeling, small-signal parameters of the MOSFET can 
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serve to check the consistency of the one-dimensional x-
equation with the y-equation. Since complete small-signal 
models of the MOSFET can be rather involved we will 
restrict the small-signal analysis to the calculation of the 
output conductance. A complete discussion on the 
remaining small-signal parameters is available in [3]. 

The small-signal output conductance of the transistor is 
defined as 
 

SG V.VD

D
d V

Ig
∂
∂

=           (3) 

 
where VG is the gate-to-bulk potential. 

Applying the definition of Eq. (3) to the Pao-Sah 
formula (1), we obtain the important result 
 

( )DId VQ
L

Wg ′−= µ          (4) 

 
A basic consistency test for compact models consists in 

comparing gd calculated through (3) using the model 
particular y-equation to gd evaluated through (4) using the 
respective x-equation. Clearly, all physically meaningful 
models derived from Pao-Sah expression (1) must satisfy 
Eq.(4). 
 
 

3 REVIEW OF COMPACT MODELS 
 
 
3.1 Surface potential models 

The first integral of the Poisson (voltage input) equation 
can be written as [4] 
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where VFB is the flat-band voltage, φs is the surface 
potential, γ is the body effect factor, φt is the thermal 
voltage and φF is the body Fermi potential. The function 
χ(φs) was defined in different ways [4] by different authors 
in order to circumvent some (numerical) problems of (5) 
near the flat-band condition. The simplest solution consists 
of choosing χ(φs) = 0. 

In inversion (φs > φF) Eq. (5) can be approximated by 
 
( ) ( )( )ts

V2
t

22
sFBG

tCFseVV φφφγφ φφφ −+=−− −−       (6) 
 
with high accuracy. 

The voltage input equation (x-equation) of surface 
potential models is either Eq. (5) or Eq. (6). The current 
output equation (y-equation) is in general obtained using 
the charge-sheet approximation [5] to calculate the 
inversion charge density ( )sIQ φ′ : 

 
( )tssFBGoxI VVCQ φφγφ −−−−′−=′        (7) 

 
where oxC′  is the oxide capacitance per unit area. The 
surface potential model will fulfill the consistency test here 
presented if the drain conductance gd calculated from (3) is 
equal to  
 

( )tssFBGoxd VVC
L

Wg φφγφµ −−−−′=        (8) 

 
There are two main approaches for deriving the surface 

potential models y-equation: 
 

a) Brews’ approach 
 
Brews’ approach is the most well-known charge-sheet 

model, which can be derived [5] from the charge-sheet 
expression for the current, rewritten below  
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φ

µ      (9) 

 
Substituting (7) into (9) it follows that 
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where φs0 and φsL are the values of the surface potential at 
the source and drain channel ends, respectively. 

 
Applying the definition in (3) to (9) and (10), the 

output conductance of Brews’ model is given by  
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where the denominator in the right-hand side is equal to 

GVs

CV
φ∂

∂  with VC = VD and φs = φsL. 

 
Differentiating Eq. (6) with respect to φs we obtain [6, 

7] 
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Equation (12) gives a very accurate value of dVC/dφs in 

inversion. The “exact” expression of dVC/dφs determined 
from Eq. (5) contains exponential terms and does not allow 
the obtention of a closed expression for the drain current as 
already observed by Van de Wiele [7]. 

We notice, however that, since the inversion charge 
density is given by (7), in order to satisfy the consistency 
test of (4), the denominator of (11) should be calculated 
from 
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Equation (13) is only an approximation of the very 

accurate Eq. (12); however, Eq. (13) is the only one which 
satisfies simultaneously the Brews’ charge-sheet model and 
the Pao-Sah equation.  Therefore, the pair of orthogonal 
equations (6) and (10) does not pass the consistency test. It 
has been shown [7, 8] that approximation (13) along with 
the Pao-Sah current expression allows one to derive 
expression (9) of the charge-sheet current. 
 
b) Approximation of the Pao-Sah integral 

 
To obtain compact approximations for the drain current 

which are valid in the different inversion regimes, Pao-Sah 
integral (2) can be calculated by means of a change of 
variable and appropriate approximations. Eq.(2) is rewritten 
in the form 
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where the integration is carried out over variable φs instead 
of VC.  

To calculate the integral in (14), we can use the 
charge-sheet approximation of ( )sIQ φ′ , Eq.(7), together 
with an approximation for dVC/dφs. Therefore, Eq. (4) will 
only occasionally be satisfied, being thus a first consistency 
test for models derived as approximations of the Pao-Sah 
integral. 

 

For instance, substituting expressions (7) and (12) into 
Eq. (14) we obtain one of the first surface-potential models 
[6] published 
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Equation (15) allows us to derive an explicit general 

equation for the current, but the final expression [6] is 
somewhat cumbersome. Since both ( )sIQ φ′  and dVC/dφs 
have been calculated from the same approximations, the 
output conductance corresponding to this choice satisfies 
Eq.(8), as stated by Baccarani et al. in [6]. 

In other words, a physically correct small-signal model 
is obtained from the approximation of Pao-Sah integral by 
choosing a consistent pair of input voltage and output 
current equations. 
 
3.2 Classical strong inversion models 

Classical strong inversion models may be derived from 
the Pao-Sah integral (2) by expressing the inversion charge 
density as a function of the channel voltage. According to 
this approach, the consistency test of Eq.(4) is thoroughly 
satisfied. For instance, a well-known dependence between 
inversion charge density and voltages [5] in strong 
inversion is given below 

 
( )C0TGoxI nVVVCQ −−′−=′       (16) 

 
where n is the slope factor and VT0 is the equilibrium 
threshold voltage.  

Substituting Eq. (16) into Eq. (1) and assuming n to be 
independent of the channel voltage VC, it follows that 

 

( ) ( )SDDS0TGoxD VVVV
2
nVV

L
WCI −



 +−−′= µ     (17) 

 
which is valid in the so-called triode region. For n=1 
(neglecting the body effect) Eq. (17) reduces to the classical 
textbook expression [5]. 

The output conductance of a transistor modeled by (17) 
is, for slope factor independent of the channel voltage, 
given by  

 

( )C0TGox
V,VD

D
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L
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which satisfies the consistency condition (4), as expected. 
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One can find in the technical literature some slightly 
different ways of presenting Eq. (16). In some models, e.g. 
[9] and [10], n is a function of the gate voltage only, while 
in others, e.g. [5] and [11], n is also a function of the 
channel voltage. The integration of (1) is possibly much 
complex if n is a function of VC, and sometimes an 
approximation is rather applied, which leads to the failure 
of the consistence test. 

Classical strong inversion models may also be derived 
by substituting the strong inversion approximation of the 
surface potential φs = 2φF +VC into a surface potential 
model such as Eqs.(9) and (10). Since according to this 
approximation dVC/dφs = 1, the consistency test will be 
satisfied only if the diffusion component of the drain 
current is negligible, because (1) and (9) are equivalent for 
this condition. 
 
3.3 Charge control models 

 
In charge control models the x-equation is a 

relationship between IQ′  and the potentials VC and VG. The 
y-equation is generally obtained by changing the integration 
variable from channel potential to inversion charge density 
in the Pao-Sah equation (2), as indicated below 
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Therefore, provided that the term IC QddV ′  is 

calculated from the x-equation, it is straightforward that the 
consistency test here presented is always satisfied by charge 
control models. 

For instance, the unified charge control model 
(UCCM), in differential form is  
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where oxb CC1n ′′+= , and bC′  is the depletion capacitance, 
calculated neglecting the carrier charge. In this case, n is a 
function of the gate voltage and does not depend on the 
drain or source voltages [9]. 
 

Substitution of (20) into (19) and integration from 
source to drain results in 
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By differentiating (21) with respect to VD and 

calculating 
SG V,VDI VQ ∂′∂  through (20), Eq.(4) is obtained. 

If, instead of (19), (9) is used to derive the current 
output equation of the charge control model, consistency 
may not be achieved. Nevertheless, this is not the case of 
UCCM which is based on the following approximations: 
linearity of the relationship between inversion charge 
density and surface potential  
 

soxI CnQd φ′=′         (22) 
 
and proportionality of the inversion capacitance with the 
inversion charge density 
 

t
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I
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Q
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Therefore, UCCM succeeds in conciliating (9) and 

Pao-Sah equation (1). 
 

4 SUMMARY 
 
Table I summarizes the analysis of compact models 

accomplished in Section 3, concerning the consistency test 
based on Pao-Sah equation. In most compact models the 
current output equation is either derived directly from Pao-
Sah integral or from the charge-sheet approximation in (9). 
In the first case, the consistency test fails only if an 
approximation other than the voltage input equation is 
introduced into Pao-Sah integral in order to simplify its 
calculation. In the second case, the consistency test 
succeeds only if Pao-Sah equation (1) and Eq.(9) are 
conciliated by means of the following condition: 
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The relevance of the use of the same approximations for 

both the input voltage equation and the output current 
equation of a MOSFET compact model has been presented. 
Inconsistent approximations in the input and output 
equations will lead to small-signal parameters which do not 
comply with the requirements of the physically ‘exact’ Pao-
Sah model. 
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Model x-equation y-equation consistency test 

Brews’ (surface potential) 
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of Pao-Sah integral 
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Table I: Consistency test applied to a sample of compact models 
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