Charge-based transistor models facilitate the IC design process and the designer education

Carlos Galup-Montoro

Federal University of Santa Catarina, Florianópolis, Brazil https://lci.ufsc.br/ https://github.com/ACMmodel/MOSFET model

Outline

- Introduction: BJTs vs MOSFETs
- ACM2.0 model
- Parameter extraction & model validation
- Circuit examples

BJTs vs. MOSFETs: history in a nutshell

of mainframes in bipolar technology T. Ning, EDM June 2023

Punta del Este Feb 2024

BJTs vs. MOSFETs: structural differences

BJT transconductance

Gate, source and drain transconductances

$$g_m = \frac{\partial I_C}{\partial V_B}$$
 $g_m = \frac{\partial I_D}{\partial V_G}$ $g_{ms} = -\frac{\partial I_D}{\partial V_S}$ $g_{md} = \frac{\partial I_D}{\partial V_D}$

The body effect reduces the gate transconductance with respect to the source transconductance. $g_m = \frac{g_{ms} - g_{md}}{n}$

n ranges from ~ 1.1 to 1.5 in bulk technologies

BJT: essentially a unidimensional device

- *l*₀ saturation current
- q_b normalized base charge
 - φ_t thermal voltage 26 mV @ 300K

MOSFET: essentially a bidimensional device G S D 1.5 V 1 V X. Yang & n n p D. K. Schroeder TED July 2012 **MOSFET Structure** 0 2 Electron Conc (/cm3) 3 18.3 14.6 11 Materials 7.31 Silicon 3.65 SiO2 Air 0 Conductor 5 9 2 3 4 5 6 7 8 10 0 1

Microns

Outline

- Introduction: BJTs vs MOSFETs
- ACM2.0 model
- Parameter extraction & model validation
- Circuit examples

The capacitive model of the MOSFET

 $Q_{i} = 0 - C_{ox}$ $+ | - - - \phi_{s}$ $C_{i} = 0 - \phi_{s}$ $C_{b} - Q_{B}$

 V_{G}

$$\frac{\Delta \phi_s}{\Delta V_G} = \frac{C_{ox}}{C_{ox} + C_b} = \frac{1}{n}$$

 C_{ox} oxide capacitance per unit area C_b depletion capacitance per unit area Q_l carrier charge density

$$\phi_s = 2\phi_F + \frac{V_G - V_{T0}}{n} = 2\phi_F + V_P$$

Drain current model: main simplifications

• $dQ_I = nC_{ox}d\phi_s$

- Q₁ carrier charge density
- W transistor width
- μ carrier mobility
- ϕ_t thermal voltage 26 mV @ 300K

Allows analytical integration for I_D

Velocity saturation effects

Normalized current vs. normalized $i_D = \frac{(q_S + q_D + 2)}{1 + \zeta(q_S - q_D)}(q_S - q_D)$ charge densities at source and drain

$$i_D = I_D / I_S$$
 $I_S = \frac{W}{L} \mu_s n C_{ox} \frac{\phi_t^2}{2}$ normalization (specific) current

$$q_{S(D)} = Q_{S(D)} / (-nC_{ox}\phi_t)$$

 $SI: q_{S(D)} >> 1 \quad WI: q_{S(D)} << 1$

Short-channel parameter
$$\zeta$$
: $\zeta = \frac{(\mu_s \phi_t / L)}{v_{lim}}$

ratio of diffusion-related velocity to saturation velocity

 $-nC_{ox}\phi_t$ thermal charge

Physics-based saturation

Saturation current due to saturation velocity of the carriers

$$I_{Dsat} = -WQ_{Dsat} v_{lim}$$

 Q_{Dsat} is the saturation inversion charge per unit area

or, using normalized variables

$$i_{Dsat} = \frac{2}{\zeta}q_{dsat}$$

"Carrier velocity approaches v_{sat} , but never reaches v_{sat} " Y.Taur TED March 2019

Physics-based saturation: design model

$$i_{Dsat} = \frac{2}{\zeta} q_{dsat} \qquad i_{Dsat} = \frac{(q_s + q_{Dsat} + 2)}{1 + \zeta(q_s - q_{Dsat})} (q_s - q_{Dsat})$$

$$q_{Dsat} = q_s + 1 + \frac{1}{\zeta} - \sqrt{\left(1 + \frac{1}{\zeta}\right)^2 + \frac{2q_s}{\zeta}}$$

or equivalently

$$q_s = \sqrt{1 + \frac{2}{\zeta}q_{dsat}} - 1 + q_{dsat}$$

Unified Charge Control Model including the effect of velocity saturation

$$\frac{V_P - V_{SB}}{\phi_t} = q_S - 1 + \ln q_S$$

$$\frac{V_{DS}}{\phi_t} = q_S - q_D + \ln \frac{q_S - q_{Dsat}}{q_D - q_{Dsat}}$$

Effect of the maximum of $i_D(q_D)$ on the output characteristic $i_{D}(v_{D})$ 3 $\frac{V_{DS}}{\phi_t} = q_S - q_D + \ln \frac{q_S - q_{Dsat}}{q_D - q_{Dsat}}$ 2.5 $I_D (\mathrm{mA})$ $\mathbf{2}$ $\frac{V_{DS}}{\phi_t} = q_S - q_D + \ln \frac{q_S}{q_D}$ 1.51 $i_D = \frac{(q_S + q_D + 2)}{1 + \zeta(q_S - q_D)} (q_S - q_D)$ 0.50 0.20.40.60.81.21.61.4 1.80 V_{DS} (V)

Output characteristics including DIBL and v_{sat}

DIBL model: $V_T = V_{T0} - \sigma(V_{SB} + V_{DB})$

Transistor	W/L (μm/μm)	V_{T0} (mV)	$I_{S}(\mu A)$	n	σ	ζ
NMOS2V	5/0.18	528	5.52	1.37	0.025	0.056

Outline

- Introduction: BJTs vs MOSFETs
- ACM2.0 model
- Parameter extraction & model validation
- Circuit examples

$V_T I_S$ and *n* extraction: the g_m/I_D method

Extraction of *σ* in WI (MI) and saturation

Common-Source Intrinsic-Gain method

- q_s calculated using parameters (V_{T0} , n, σ) and UCCM.
 - measure $I_{Dsat}(V_G, V_D, V_S, V_B) \rightarrow i_{dsat} = I_{Dsat}/I_S$.
- Example: NMOS transistor, $V_G = V_D = V_{DDmax}$ and $V_S = V_B = 0V$.

$I_D vs V_{GB}$ - ACM-5PM vs PSP – 130 nm SiGe IHP¹

Characteristics of an LVT NMOS bulk transistor with W /L = 10μ m/ 120 nm.

¹ Institut for High-Performance Microelectronics (IHP) open-source PDK

Punta del Este Feb 2024

$I_D vs V_{DS}$ - ACM-5PM vs PSP – 130 nm SiGe IHP

Characteristics for a LVT NMOS bulk transistor with W /L = 10μ m/ 120 nm.

28 nm FD-SOI² technology DC characteristics

Parameter extraction	Transistor	W/L	V_{T0} (mV)	$I_{S}(\mu A)$	n	σ	ζ
for L=60 nm	LVTNMOS	1µm/60 nm	390.5	3.25	1.138	0.018	0.039
	LVTPMOS	1µm/60 nm	403.6	0.755	1.014	0.029	0.024

Model Verification: NMOS & PMOS TRANSISTORS

² ST Microelectronics

Punta del Este Feb 2024

Outline

- Introduction: BJTs vs MOSFETs
- ACM2.0 model
- Parameter extraction & model validation
- Circuit examples

PSP Gummel symmetry test³

ACM2.0 Gummel symmetry test

CMOS Inverter in 130 nm bulk VTC and short-circuit current

CMOS Inverter in 130 nm bulk Output Voltage and pull-down current 21.5 v_{out} (V) V_{DD} 1 0.5 V_{IN} V_{OUT} 0 1.8 10 C_L 8 0 $i_{pull-down} \pmod{(\mathrm{mA})}$ *I*pull-down 6 4 $\mathbf{2}$ 0 2060 4080 0 time (ps) $\dots v_{in}$ — PSP --- ACM

CMOS Inverter VTC and short-circuit current in 28 nm FD-SOI

 $W_n = W_p = 1 \ \mu m$ $L_n = L_p = 60 \ nm$

1.1 $V_{DD} = 0.8 V$ $V_{DD} = 1V$ $V_{DD} = 0.65 V$ $V_{DD} = 0.47 V$ $v_{DD} = 0.3 V$ -0.1

 $0.0 \quad 0.1 \quad 0.2 \quad 0.3 \quad 0.4 \quad 0.5 \quad 0.6 \quad 0.7 \quad 0.8 \quad 0.9 \quad 1.0$

Punta del Este Feb 2024

ACM2.0: Simple 5-DC-parameter MOSFET model

$$V_P = \frac{V_{GB} - V_{T0} + \sigma(V_{DB} + V_{SB})}{n}$$
$$\frac{V_P - V_{SB}}{\phi_t} = q_s - 1 + \ln(q_s)$$
$$q_{dsat} = q_s + 1 + \frac{1}{\zeta} - \sqrt{\left(1 + \frac{1}{\zeta}\right)^2 + \frac{2q_s}{\zeta}}$$
$$\frac{V_{DS}}{\phi_t} = q_s - q_d + \ln\left(\frac{q_s - q_{dsat}}{q_d - q_{dsat}}\right)$$

Punta del Este Feb 2024

 $I_D = I_S \frac{(q_S + q_D + 2)}{1 + \zeta(q_S - q_D)} (q_S - q_D)$

Acknowledgments

- LCI-UFSC, Florianopolis, Brazil
- TIMA Univ. Grenoble Alpes, France
- STMicroelectronics, Crolles, France
- IHP, Frankfurt am Oder, Germany
- STIC-AmSud multinational program
- CAPES and CNPq agencies, Brazil
- LASCAS 2024 for the invitation

2024 IEEE International Symposium on Circuits and

Systems

📋 19 May 2024 - 22 May 2024

Singapore

Live Demonstration: A 5-DCparameter MOSFET model for circuit design and simulation using open-source EDA tools *Gabriel Maranhão, Deni Germano Alves Neto, Marcio Cherem Schneider, Carlos Galup-Montoro*

A design-oriented single-piece short-channel MOSFET model Deni Germano Alves Neto, Gabriel Maranhão, Marcio Cherem Schneider, Carlos Galup-Montoro