A 5-DC-parameter MOSFET model for circuit simulation in QucsStudio and SPECTRE

Deni G. Alves Neto¹, Cristina M. Adornes¹, Gabriel Maranhão¹, Mohamed K. Bouchoucha ^{2,3}, Manuel J. Barragan³, Andreia Cathelin², Marcio C. Schneider¹, Sylvain Bourdel³ and Carlos Galup-Montoro¹

¹Federal University of Santa Catarina, 88040-900 Florianópolis, Brazil ²STMicroelectronics, 38920 Crolles, France ³Univ. Grenoble Alpes, CNRS, Grenoble INP, TIMA F-38000, Grenoble, France

Outline

- Introduction
- Velocity saturation effects
- Parameter extraction
- Intrinsic capacitances including velocity saturation and DIBL
- Circuit examples

Velocity saturation effects

Normalized current vs. normalized charge densities

$$i_D = \frac{(q_S + q_D + 2)}{1 + \zeta |q_S - q_D|} (q_S - q_D)$$

short-channel parameter :

diffusion-related velocity /saturation velocity

$$\zeta = \frac{(\mu_s \phi_t / L)}{v_{sat}}$$

Saturation current due to saturation velocity of the carriers

$$I_{Dsat} = -WQ_{Dsat}v_{sat}$$

 Q_{Dsat} is the saturation inversion charge density at the drain end of the channel

or using normalized variables

$$i_{Dsat} = \frac{2}{\zeta} q_{dsat}$$

Physics-based saturation: design model

$$i_{Dsat} = \frac{2}{\zeta} q_{dsat} \qquad i_{Dsat} = \frac{(q_S + q_{Dsat} + 2)}{1 + \zeta(q_S - q_{Dsat})} (q_S - q_{Dsat})$$

$$q_{Dsat} = q_s + 1 + \frac{1}{\zeta} - \sqrt{\left(1 + \frac{1}{\zeta}\right)^2 + \frac{2q_s}{\zeta}}$$

Unified Charge Control Model including the effect of velocity saturation

$$\frac{V_P - V_{SB}}{\phi_t} = q_S - 1 + \ln q_S$$

 ϕ_t = 26 mV@ 300K

$$\frac{V_{DS}}{\phi_t} = q_S - q_D + \ln \frac{q_S - q_{Dsat}}{q_D - q_{Dsat}}$$

. .

Edinburgh, June 2023

Effect of the maximum of $i_D(q_D)$ on the output characteristic $i_{D}(v_{D})$ 3 $\frac{V_{DS}}{\phi_t} = q_S - q_D + \ln \frac{q_S - q_{Dsat}}{q_D - q_{Dsat}}$ 2.5 $I_D (\mathrm{mA})$ 2 $\frac{V_{DS}}{\phi_t} = q_S - q_D + \ln \frac{q_S}{q_D}$ 1.51 $i_D = \frac{(q_S + q_D + 2)}{1 + \zeta(q_S - q_D)} (q_S - q_D)$ 0.50 0.20.6 0.40.81.21.41.61.80 V_{DS} (V)

Output characteristics including DIBL and v_{sat}

DIBL model: $V_T = V_{T0} - \sigma(V_{SB} + V_{DB})$

Transistor	W/L (μm/μm)	V_{T0} (mV)	$I_{S}(\mu A)$	n	σ	ζ
NMOS2V	5/0.18	528	5.52	1.37	0.025	0.056

Extraction of σ *in WI (MI) in saturation*

Common Source Intrinsic Gain method

28 nm FD-SOI technology DC characteristics

Parameter extraction	Transistor	W/L	V_{T0} (mV)	$I_{S}(\mu A)$	n	σ	ζ
for L=60 nm	LVTNMOS	1µm/60 nm	390.5	3.25	1.138	0.018	0.039
	LVTPMOS	1µm/60 nm	403.6	0.755	1.014	0.029	0.024

Model Verification: NMOS & PMOS TRANSISTORS

CMOS Inverter VTC and short-circuit current in 28 nm FD-SOI

 $W_n = W_p = 1 \ \mu m$ $L_n = L_p = 60 \ nm$

 $0.0 \quad 0.1 \quad 0.2 \quad 0.3 \quad 0.4 \quad 0.5 \quad 0.6 \quad 0.7 \quad 0.8 \quad 0.9 \quad 1.0$

Edinburgh, June 2023

CMOS Inverter in 180 nm bulk VTC and short-circuit current

— BSIM •••• 4PM ••• 5PM

Transistor	W/L (μm/μm)	V_{T0} (mV)	$I_{S}(\mu A)$	n	σ	ζ
NMOS	5/0.18	528	5.52	1.37	0.027	0.056
PMOS	5/0.18	-525	1.82	1.40	0.024	0.035

CMOS Inverter in 180 nm bulk Output Voltage and pull-down current

11- stage Ring Oscillator in 180 nm bulk Output Voltage

Conclusion

•For the first time, a truly compact MOSFET model for SPICE formulated with single-piece functions

•With only 5 DC parameters that are extracted from simple and direct methods (automatized) using SPICE

•Good matching with circuit simulations with BSIM and UTSOI2 models

Main References

- C. Galup-Montoro and M. C. Schneider, *MOSFET Modeling for circuit analysis* and design, World Scientific, 2007.
- C. M. Adornes, D. G. Alves Neto, M. C. Schneider and C. Galup-Montoro, " Bridging the gap between design and simulation of low-voltage CMOS circuits," Journal of Low Power Electronics and Applications, vol. 12, issue 2, June 2022.
- Accellera. Verilog-AMS reference manual. [Online]. Available: https://www.accellera.org

